ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Lm317 цоколевка. Регулируемые стабилизаторы LM317 и LM337. Особенности применения. Детали для регулируемого блока питания

Блок питания – это непременный атрибут в мастерской радиолюбителя. Я тоже решил собрать себе регулируемый БП, так как надоело каждый раз покупать батарейки или пользоваться случайными адаптерами. Вот его краткая характеристика: БП регулирует выходное напряжение от 1,2 Вольта до 28 Вольт. И обеспечивает нагрузку до 3 А (зависит от трансформатора), что чаще всего достаточно для проверки работоспособности радиолюбительских конструкций. Схема проста, как раз для начинающего радиолюбителя. Собранная на основе дешёвых компонентов - LM317 и КТ819Г .

Схема регулируемого блока питания LM317

Список элементов схемы:

  • Стабилизатор LM317
  • Т1 - транзистор КТ819Г
  • Tr1 - трансформатор силовой
  • F1 - предохранитель 0.5А 250В
  • Br1 - диодный мост
  • D1 - диод 1N5400
  • LED1 - светодиод любого цвета
  • C1 - конденсатор электролитический 3300 мкф*43В
  • C2 - конденсатор керамический 0.1 мкф
  • C3 - конденсатор электролитический 1 мкф*43В
  • R1 - сопротивление 18K
  • R2 - сопротивление 220 Ом
  • R3 - сопротивление 0.1 Ом*2Вт
  • Р1 - сопротивление построечное 4.7K

Цоколёвка микросхемы и транзистора

Корпус взял от БП компьютера. Передняя панель изготовленная из текстолита, желательно установить вольтметр на этой панели. Я не установил, потому что пока не нашёл подходящего. Также на передний панели установил зажимы для выходных проводов.


Входную розетку оставил для питания самого БП. Печатная плата сделанная для навесного монтажа транзистора и микросхемы стабилизатора. Их закрепил на общем радиаторе через резиновую прокладку. Радиатор взял солидный (на фото его видно). Его нужно брать как можно больший - для хорошего охлаждения. Всё-таки 3 ампера - это немало!

Приветствуем Вас уважаемый посетитель данной Интернет странички. Хотим обратить Ваше внимание, что существует множество схем и вариантов изготовления светодиодного драйвера, посредством простого стабилизатора тока на LM317. Наиболее трудоёмкие и материально затратные, представляют собой дополнительные схематические решения, позволяющие при критических перепадах напряжения и силы тока, сохранить наиболее дорогостоящие электронные компоненты.

Схема и принцип работы стабилизатора до 1.5А

Чтобы изготовить стабилизатор тока на LM317 воспользуемся следующей схемой.
Минимальное сопротивление резистора между управляющим электродом и выходным соответствует значению в 1 Ом, а максимальное значение равно 120 Ом. Сопротивление резистора можно подобрать опытным путем, или рассчитать по формуле.

I стабилизации = 1,25/R

Мощности резистора при рассеивании выделенного тепла, должно хватать, не только на рассеивание, а также учитывать возможность его перегрева, поэтому используется значение мощности с хорошим запасом. Чтобы её вычислить, необходимо использовать следующую формулу:

P вт = I² * R.

Как видно из формулы, мощность равна, квадрату силы тока умноженному на сопротивление резистора. Для выпрямления, наиболее эффективным решением будет применение стандартного диодного моста. На выходе диодного моста, устанавливают конденсатор с большой ёмкостью. При регулировке силы тока на LM317 LM317 используется линейный принцип работы. В связи с этим возможен их сильный нагрев, вследствие их низкого коэффициента полезного действия. Поэтому система охлаждения должна быть продуманной и эффективной, то есть иметь радиатор, который сможет хорошо охлаждать электронные компоненты. Если во время отслеживания температуры нагрева, была зарегистрирована низкая температура, в этом случае можно использовать менее мощную систему охлаждения.

Стабилизатор тока до 10А

Ток стабилизации можно повысить до 10 Ампер, если будут добавлены в схему транзистор с маркировкой KT825A и сопротивление со значением 12 Ом. Такое распределение электронных компонентов используется радиолюбителями, у которых нет в наличии LM338 или LM350. Схема при силе тока в 3A собирается на основе транзистора КТ818. Нагрузочные амперы в любой из схем, рассчитываются тождественно.

Если у радиолюбителя появилось огромное желание, сделать драйвер, но в наличии нет нужного блока питания, то можно воспользоваться альтернативными возможностями.

Можно использовать вариант последовательного или параллельного подключения резисторов.

Если светодиодам требуется сила тока равная одному амперу, то при расчёте получим сопротивление равное 1,25 Oм. Подобрать резистор с таким значением Вы не сможете, потому что их не производят, поэтому необходимо взять первый ближний, с чуть большим сопротивлением.

Предложить знакомому радиолюбителю поменять подходящий по параметрам блок питания, на нужную ему радиодеталь или электронную схему. На питание собранной схемы подключить батарейку Крону или аналогичную по параметрам на 9V. Если Кроны нет, последовательно соединить 6 батарей любого размера по 1,5 V и подключить их к схеме.

Настоятельно советуем Вам, не использовать LM317 на пределе допустимых норм. Производимые в Китае электронные элементы, имеют малый запас прочности. Безусловно, тут имеется защита от короткого замыкания или от перегрева, но вот успешно она срабатывает, не во всех критических режимах и ситуациях. При подобных ситуациях, могут сгореть кроме LM317, другие электронные компоненты, а это вовсе не желательно.

Главные параметры LM317: Входное напряжение до 40 В, нагрузка до 1,5А; максимальная температура рабочая +125°С, защита от короткого замыкания.

В случае если в схеме нужен стабилизатор на какое-то не стандартное напряжение, то прекрасное решение использование популярного интегрального стабилизатора LM317T с характеристиками:

  • способен работать в диапазоне выходных напряжений от 1,2 до 37 В;
  • выходной ток может достигать 1,5 А;
  • максимальная рассеиваемая мощность 20 Вт;
  • встроенное ограничение тока, для защиты от короткого замыкания;
  • встроенную защиту от перегрева.

Описание

У микросхемы LM317T схема включения в минимальном варианте предполагает наличие двух резисторов, значения сопротивлений которых определяют выходное напряжение, входного и выходного конденсатора.

У стабилизатора два важных параметра: опорное напряжение (Vref) и ток вытекающий из вывода подстройки (Iadj).
Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Опорное напряжение это то напряжение которое микросхема стабилизатора стремиться поддерживать на резисторе R1. Таким образом если резистор R2 замкнуть, то на выходе схемы будет 1,25 В, а чем больше будет падение напряжения на R2 тем больше будет напряжение на выходе. Получается что 1,25 В на R1 складываться с падением на R2 и образует выходное напряжение.

Первый раз, когда я посчитал делитель для микросхемы по формуле из LM317T datasheet, я задавался током 1 мА, а потом я очень долго удивлялся почему напряжение реальное напряжение отличается. И с тех пор я задаюсь R1 и считаю по формуле:
R2=R1*((Uвых/Uоп)-1).
Тестирую в реальных условиях и уточняю значения сопротивлений R1 и R2.
Посмотрим какие должны быть для широко распространенных напряжений 5 и 12 В.

Но я бы посоветовал использовать LM317T в случае типовых напряжений, только когда нужно срочно что-то сделать на коленке, а более подходящей микросхемы типа 7805 или 7812 нету под рукой.

А вот расположение выводов LM317T:

  1. Регулировочный
  2. Выходной
  3. Входной

Кстати у отечественного аналога LM317 - КР142ЕН12А схема включения точно такая же.

На этой микросхеме несложно сделать регулируемый блок питания: вместо постоянного R2 поставьте переменный, добавьте сетевой трансформатор и диодный мост.

На LM317 можно сделать и схему плавного пуска: добавляем конденсатор и усилитель тока на биполярном pnp-транзисторе.

Схема включения для цифрового управления выходным напряжением тоже не сложна. Рассчитываем R2 на максимальное требуемое напряжение и параллельно добавляем цепочки из резистора и транзистора. Включение транзистора будет добавлять в параллель к проводимости основного резистора, проводимость дополнительного. И напряжение на выходе будет снижаться.

Схема стабилизатора тока ещё проще, чем напряжения, так как резистор нужен только один. Iвых = Uоп/R1.
Например, таким образом мы получаем из lm317t стабилизатор тока для светодиодов:

  • для одноватных светодиодов I = 350 мА, R1 = 3,6 Ом, мощностью не менее 0,5 Вт.
  • для трехватных светодиодов I = 1 А, R1 = 1,2 Ом, мощностью не менее 1,2 Вт.

На основе стабилизатора легко сделать зарядное устройство для 12 В аккумуляторов, вот что нам предлагает datasheet. С помощью Rs можно настроить ограничение тока, а R1 и R2 определяют ограничение напряжения.

Если в схеме потребуется стабилизировать напряжения при токах более 1,5 А, то все также можно использовать LM317T, но совместно с мощным биполярным транзистором pnp-структуры.
Если нужно построить двуполярный регулируемый стабилизатор напряжения, то нам поможет аналог LM317T, но работающий в отрицательном плече стабилизатора - LM337T.

Но у данной микросхемы есть и ограничения. Она не является стабилизатором с низким падением напряжения, даже наоборот начинает хорошо работать только когда разница между выходным и выходным напряжением превышает 7 В.

Если ток не превышает 100мА, то лучше использовать микросхемы с низким падением LP2950 и LP2951.

Мощные аналоги LM317T - LM350 и LM338

Если выходного тока в 1,5 А недостаточно, то можно использовать:

  • LM350AT, LM350T - 3 А и 25 Вт (корпус TO-220)
  • LM350K - 3 А и 30 Вт (корпус TO-3)
  • LM338T, LM338K - 5 А

Производители этих стабилизаторов кроме увеличения выходного тока, обещают сниженный ток регулировочного входа до 50мкА и улучшенную точность опорного напряжения.
А вот схемы включения подходят от LM317.

Справочники по компонентам (или datasheets) являются необходимейшим элементом
при разработке электронных схем. Однако, у них есть одна, но неприятная особенность.
Дело в том, что документация на любой электронный компонент (например, микросхему)
всегда должна быть готова еще до того, как эта микросхема начнет выпускаться.
В итоге, реально мы имеем ситуцию, когда микросхемы уже поступили в продажу,
а еще ни одно изделие на их основе не было создано.
А, значит, все рекомендации и особенно схемы приложений, приводимые в datasheets,
носят теоретический, рекомендательный характер.
Эти схемы в основном демонстрируют принципы работы электронных компонентов,
но они не проверены на практике и не должны поэтому слепо приниматься во внимание
при разработке.
Это нормальное и логичное положение дел, если только со временем и по мере
накопления опыта в документацию вносятся изменения и дополнения.
Практика же показывает обратное,- в большинстве случаев все схемные решения,
приводимые в datasheet, так и остаются на теоретическом уровне.
И, к сожалению, частенько это не просто теории, а грубые ошибки.
И еще большее сожаление вызывает несоответствие реальных (и важнейших)
параметров микросхемы, заявленным в документации.

В качестве типичного примера подобных datasheets приведем справочник на LM317,-
трех-выводной регулируемый стабилизатор напряжения, который, кстати, выпускается
уже лет 20. А схемы и данные в его datasheet все те же …

Итак, недостатки LM317, как микросхемы и ошибки в рекомендациях по ее использованию.

1. Защитные диоды.
Диоды D1 и D2 служат для защиты регулятора,-
D1 для защиты от короткого замыкания на входе, а D2 для защиты от разряда
конденсатора C2 “через низкое выходное сопротивление регулятора” (цитата).
На самом деле, диод D1 не нужен, поскольку никогда не бывает ситуации, когда
напряжение на входе регулятора меньше, чем напряжение на выходе.
Поэтому, диод D1 никогда не открывается, а значит и не защищает регулятор.
Кроме, конечно, случая короткого замыкания на входе. Но это – нереальная ситуация.
Диод D2 может открываться, конечно, Но, конденсатор C2 прекрасно разряжается
и без него, через резисторы R2 и R1 и через сопротивление нагрузки.
И как-то специально его разряжать нет необходимости.
Кроме того, упоминание в Datasheet о “разряде С2 через выход регулятора”
не более, чем ошибка, потому, как схема выходного каскада регулятора –
это эмиттерный повторитель.
И конденсатору C2 просто нет может разряжаться через выход регулятора.

2. Теперь — о самом неприятном, а именно о несоответствии реальных
электрических характеристик заявленным.

В Datasheets всех производителей есть параметр Adjustment Pin Current
(ток по входу подстройки). Параметр весьма интересный и важный, определяющий,
в частности, максимальную величину резистора в цепи входа Adj.
А также и значение конденсатора C2. Заявленное типовое значение тока Adj равно 50 мкА.
Что весьма впечатляет и полностью устраивало бы меня, как схемотехника.
Если бы на самом деле оно не было бы в 10 раз больше, т.е. 500 мкА.

Это — реальное несоответствие, проверенное на микросхемах разных производителей
и на протяжении многих лет.
А началось все с недоумения — почему это на выходе во всех схемах такой низкоомный делитель?
А вот потому и низкоомный, что иначе невозможно получить на выходе LM317
минимальный уровень напряжения.

Самое интересное, что в методике измерения тока Adj низкоомный делитель
на выходе так же присутствует. Что фактически означает, что этот делитель включен
параллельно с электродом Adj.
Только с таким хитрым подходом и можно «влезть» в рамки типовой величины в 50 мкА.
Но это — довольно изящная, но уловка. «Особые условия измерения».

Я понимаю, весьма трудно добиться стабильного тока заявленной величины в 50 мкА.
Так не пишите липу в Datasheet. Иначе — это обман покупателя. А честность — лучшая политика.

3. Еще о самом неприятном.

В Datasheets LM317 есть параметр Line Regulation, который определяет
рабочий диапазон напряжений. И диапазон указан таки не плохой — от 3 до 40 Вольт.
Вот только одно маленькое НО …
Внутренняя часть LM317 содержит стабилизатор тока, в котором использован
стабилитрон на напряжение 6,3 В.
Поэтому, эффективное регулирование начинается с напряжения Вход-Выход в 7 Вольт.
Кроме того, выходной каскад LM317 — это транзистор n-p-n, включенный по схеме
эмиттерного повторителя. И на «раскачке» у него — такие же повторители.
Поэтому эффективная работа LM317 при напряжении в 3 В невозможна.

4. О схемах, обещающих получить на выходе LM317 регулируемое напряжение от ноля Вольт.

Минимальная величина напряжения на выходе LM317 составляет 1,25 В.
Можно было бы получить и меньше, если бы не встроенная схема защиты от
короткого замыкания на выходе. Не самая хорошая схема, мягко говоря …
В других микросхемах схема защиты от КЗ срабатывает при превышении тока нагрузки.
А в LM317 — при снижении выходного напряжение ниже 1,25 В. Простенько и со вкусом,-
закрылся себе транзистор при напряжении база-эмиттер ниже 1,25 В и все тут.
Вот поэтому, все схемы приложений, которые обещают получить на выходе
LM317 регулируемое напряжение, начиная аж от ноля вольт — не работают.
Все эти схемы предлагают подключить контакт Adj через резистор к источнику
отрицательного напряжения.
Но уже при напряжении между выходом и контактом Adj менее 1,25 В
сработает схема защиты от КЗ.
Все эти схемы — чистая теоретическая фантазия. Их авторы не знают, как работает LM317.

5. Способ защиты от КЗ на выходе, используемый в LM317, также накладывает
известные ограничения на запуск регулятора,- в ряде случаев запуск будет затруднен,
поскольку невозможно различить режим короткого замыкания и режим нормального включения,
когда выходной конденсатор еще не заряжен.

6. Рекомендации по номиналам конденсатора на выходе LM317 очень впечатляют,-
это диапазон от 10 до 1000 мкФ. Что в сочетании с величиной выходного сопротивления
регулятора порядка одной тысячной Ома является полным бредом.
Даже студенты знают, что конденсатор на входе стабилизатора существенно,
мягко говоря, эффективнее, чем на выходе.

7. О принципе регулирования выходного напряжения LM317.

LM317 представляет собой операционный усилитель, в котором регулирование
выходного напряжения осуществляется по НЕ инвертирующему входу Adj.
Другими словами — по цепи Положительной обратной связи (ПОС).

Чем это плохо? А тем, что все помехи с выхода регулятора через вход Adj проходят внутрь LM317,
а затем — опять на нагрузку. Хорошо еще, что коэффициент передачи по цепи ПОС меньше единицы …
А то получили бы автогенератор.
И не удивительно в связи с этим, что в цепи Adj рекомендуется ставить конденсатор С2.
Хоть как-то отфильтровывать помехи и повышать устойчивость к самовозбуждению.

Весьма занятным представляется и тот факт, что в цепи ПОС, внутри LM317,
имеется конденсатор 30 пФ. Что увеличивает уровень пульсаций на нагрузке с повышением частоты.
Правда, это честно показано на диаграмме Ripple Rejection. Вот только зачем этот конденсатор?
Он был бы весьма полезен, если бы регулирование осуществлялось по цепи
Отрицательной обратной связи. А в цени ПОС он только ухудшает устойчивость.

Кстати, и с самим понятием Ripple Rejection не все «по понятиям».
В общепринятом понимании эта величина означает, насколько хорошо регулятор
фильтрует пульсации со ВХОДА.
А для LM317 она фактически означает степень собственной ущербности
и показывает, как же хорошо LM317 борется с пульсациями, которые сама же
берет с выхода и опять загоняет внутрь самой себя.
В других регуляторах регулирование осуществляется по цепи
Отрицательной обратной связи, что максимально улучшает все параметры.

8. О минимальном токе нагрузки для LM317.

В Datasheet указан минимальный ток нагрузки в 3,5 мА.
При меньшем токе LM317 неработоспособна.
Весьма странная особенность для стабилизатора напряжения.
Значит, надо следить не только за максимальным током нагрузки, но и за минимальным тоже?
Это так же означает, что при токе нагрузки, равном 3,5 мА КПД регулятора не превышает 50 %.
Большое Вам спасибо, господа разработчики …

1. Рекомендации по применению защитных диодов для LM317 носят обще-теоретический характер и рассматривают ситуации, которых не бывает на практике.
А, поскольку, в качестве защитных диодов предлагается использовать мощные диоды Шоттки, то получаем ситуацию, когда стоимость (ненужной) защиты превышает цену самой LM317.

2. В Datasheets LM317 приведен неверный параметр на ток по входу Adj.
Он измерен в «особых» условиях при подключении низкоомного выходного делителя.
Эта методика измерения не соответствует общепринятому понятию «ток по входу» и показывает неспособность достичь при изготовлении LM317 заданных параметров.
А также и является обманом покупателя.

3. Параметр Line Regulation указан как диапазон от 3 до 40 Вольт.
На некоторых схемах приложений LM317 «работает» при напряжении вход-выход аж в два вольта.
На самом деле, диапазон эффективного регулирования равен 7 — 40 Вольт.

4. Все схемы получения на выходе LM317 регулируемого напряжения, начиная с ноля вольт, — практически не работоспособны.

5. Способ защиты от короткого замыкания LM317 на практике иногда применяется.
Он прост, но не является лучшим. В ряде случаев запуск регулятора будет вообще невозможен.

7. В LM317 реализован ущербный принцип регулирования выходного напряжения,-
по цепи Положительной обратной связи. Надо бы хуже, да некуда.

8. Ограничение на минимальный ток нагрузки свидетельствует о плохой схемотехнике LM317 и явно ограничивает варианты ее использования.

Суммируя все недостатки LM317 можно дать рекомендации:

а) Для стабилизации постоянных «типовых» напряжений 5, 6, 9, 12, 15, 18, 24 В целесообразно использовать трех-выводные стабилизаторы серии 78xx, а не LM317.

б) Для построения действительно эффективных стабилизаторов напряжения следует использовать микросхемы типа LP2950, LP2951, способных работать при напряжении вход-выход менее 400 милливольт.
В сочетании с мощными транзисторами при необходимости.
Эти же микросхемы эффективно работают и в качестве стабилизаторов тока.

в) В большинстве случаев операционный усилитель, стабилитрон и мощный транзистор (особенно полевой) дадут гораздо лучшие параметры, чем LM317.
И уж точно — лучшую регулировку, а также и широчайший диапазон по типам и номиналам резисторов и конденсаторов.

г). И, не доверяйте слепо Datasheets.
Любые микросхемы делаются и, что характерно, продаются людьми …

Vin (входное напряжение): 3-40 Вольт
Vout (выходное напряжение): 1,25-37 Вольт
Выходной ток: до 1,5 Ампер
Максимальная рассеиваемая мощность: 20 Ватт
Формула для расчета выходного (Vout) напряжения: Vout = 1,25 * (1 + R2/R1)
*Сопротивления в Омах
*Значения напряжения получаем в Вольтах

Данная простая схема позволяет выпрямить переменное напряжение в постоянное благодаря диодному мосту из диодов VD1-VD4, а затем точным подстрочным резистором типа СП-3 выставить нужное вам напряжение в пределах допустимых интегральной микросхемы-стабилизатора.

В качестве выпрямительных диодов взял старые FR3002 , которые когда-то давно выпаял из древнейшего компьютера 98-го года. При внушительных размерах (корпус DO-201AD) их характеристики (Uобратное: 100 Вольт; Iпрямой: 3 Ампера) не впечатляют, но мне и этого хватает с головой. Для них даже пришлось расширять отверстия в плате, уж больно выводы у них толстые (1,3мм). Если немного изменить плату в лейоте можно впаять сразу готовый диодный мост.

Радиатор для отведения тепла от микросхемы 317 обязателен, даже лучше небольшой вентилятор поставить. Еще, в месте соединения подложки корпуса TO-220 микросхемы с радиатором капните немного термопасты. Степень нагрева будет зависеть от того, сколько мощности рассеивает микросхема, а также от самой нагрузки.

Микросхему LM317T я не устанавливал прямо на плату, а вывел от неё три провода, с помощью которых и соединил этот компонент с остальными. Это было сделано для того, чтобы ножки не расшатывались и вследствие чего не были переломанными, ведь данная деталь будет прикреплена к рассеивателю тепла.

Подстрочный резистор для возможности использования полного вольтажа микросхемы, то есть регулировки от 1,25 и аж до 37 Вольт устанавливаем с максимальным сопротивлением 3432 кОма (в магазине самый близкий номинал 3,3кОм.). Рекомендуемый тип резистора R2: подстрочный многооборотный (3296).

Саму микросхему-стабилизатор LM317T и подобные ей выпускает множество, если не все компании по производству электронных компонентов. Покупайте только у проверенных продавцов, потому что встречаются китайские подделки, особенно часто микросхемы LM317HV, которая рассчитана на входное напряжение аж до 57 Вольт. Опознать ненастоящую микросхему можно по железной подложке, в фейке она имеет множество царапин и неприятный серый цвет, также неправильную маркировку. Еще нужно сказать, что микросхема имеет защиту от короткого замыкания, а также перегрева, но на них сильно не рассчитывайте.

Не забываем, что данный (LM317Т) интегральный стабилизатор способен рассеивать мощность с радиатором только до 20 Ватт. Плюсами этой распространённой микросхемы являются её маленькая цена, ограничение внутреннего тока короткого замыкания, внутренняя тепловая защита

Платку можно нарисовать качественно даже обычным пергаментным маркером, а потом вытравить в растворе медного купороса/хлорного железа…

Фото готовой платы.