ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Пассивный фильтр низких частот своими руками. Активный фильтр низких частот (ФНЧ) для сабвуфера. Пассивные типы фильтров


Доброго времени суток, уважаемые читатели! Сегодня речь пойдёт о сборке простого фильтра низких частот. Но несмотря на свою простоту, по качеству фильтр не уступает магазинным аналогам. Итак, приступим!

Основные характеристики фильтра

  • Частота среза 300 Гц, более высокие частоты отсекаются;
  • Питающее напряжение 9-30 Вольт;
  • Потребляет фильтр 7 мА.

Схема

Схема фильтра представлена на следующем рисунке:


Список деталей:
  • DD1 - BA4558;
  • VD1 - Д814Б;
  • C1, C2 - 10 мкФ;
  • С3 - 0,033 мкФ;
  • С4 - 220 нф;
  • С5 - 100 нф;
  • С6 - 100 мкФ;
  • С7 - 10 мкФ;
  • С8 - 100 нф;
  • R1, R2 - 15 кОм;
  • R3, R4 - 100 кОм;
  • R5 - 47 кОм;
  • R6, R7 - 10 кОм;
  • R8 - 1 кОм;
  • R9 - 100 кОм - переменный;
  • R10 - 100 кОм;
  • R11 - 2 кОм.

Изготовление фильтра низких частот

На резисторе R11, конденсаторе C6 и стабилитроне VD1 собран блок стабилизации напряжения.


Если напряжение питания меньше 15 Вольт, то R11 следует исключить.
На компонентах R1, R2, С1, С2 собран сумматор входных сигналов.


Его можно исключить, если на вход подаётся моносигнал. Источник сигнала при этом следует подключать напрямую ко второму контакту микросхемы.
DD1.1 усиливает входной сигнал, а на DD1.2 собран непосредственно сам фильтр.


Конденсатор С7 фильтрует выходной сигнал, на R9, R10, С8 реализован регулятор звука, его также можно исключить и снимать сигнал с минусовой ножки С7.
Со схемой разобрались, теперь давайте перейдём к изготовлению печатной платы. Для этого нам понадобится стеклотекстолит размерами 2х4 см.
Файл платы фильтра низких частот:

(cкачиваний: 420)



Шлифуем до блеска мелкозернистой наждачной бумагой, обезжириваем поверхность спиртом. Распечатываем этот рисунок, переносим на текстолит методом ЛУТ.



При необходимости дорисовываем дорожки лаком.
Теперь следует приготовить раствор для травления: растворяем 1 часть лимонной кислоты в трёх частях перекиси водорода (пропорция 1:3 соответственно). Добавляем в раствор щепотку соли, она - катализатор и в процессе травления не участвует.
В приготовленный раствор погружаем плату. Ждём растворения лишней меди с её поверхности. По окончании процесса травления достаём нашу плату, промываем проточной водой и снимаем тонер ацетоном.


Компоненты впаивайте, ориентируясь на это фото:


В первой версии рисунка я не сделал отверстие под R4, поэтому припаял его снизу, в документе для скачивания этот недостаток устранён.
На обратной стороне платы необходимо припаять перемычку:

При использовании современной магнитолы с акустикой чувствительностью 89 дБ и выше уровень громкости обычно вполне достаточен. Поэтому первый (бюджетный) усилитель, как правило, предназначается в первую очередь для сабвуфера. Обычно там есть блок формирования сигнала, но его возможности ограничены. Чаще всего фильтры имеют фиксированную частоту среза. А специализированный усилитель с плавно перестраиваемыми фильтрами - это вещь уже не бюджетная.

Предлагаемые схемы предназначены как раз для таких случаев. Большинство из них были разработаны "по просьбе трудящихся. Поэтому, кстати, мало рисунков печатных плат - это дело сугубо индивидуальное, зависит от деталей и компоновки в целом. Но платы зависит многое, в том числе и количество "граблей", на которые наступит радиолюбитель при повторении, поэтому все дополнения только приветствуются. Я пока проектирую платы только для конструкций "личного употребления", на все нет времени...

При разработке ставилось два условия:

  • обойтись только однополярным питанием 12 вольт, чтобы не связываться с изготовлением преобразователей и не лезть за повышенным напряжением внутрь усилителя
  • схема должна быть предельно простой и не требовать для повторения особой квалификации.

Первая схема предназначена для простейших установок. Поэтому ее характеристики далеки от идеала, но возможности вполне достаточны. Большой диапазон перестройки частоты частоты среза позволяет использовать сабвуфер практически с любой акустикой. Если у магнитолы нет линейных выходов - не беда. Схема может работать и с "колоночных" выходов магнитолы. Для этого нужно только увеличить сопротивление резисторов R1,R2 до 33...100 кОм.

При широкой полосе частот, воспроизводимых сабвуфером, для "стыковки" звучания с фронтальной акустикой необходимо использовать регулируемый фазовращатель. Схема простейшего сумматора с фазовращателем приведена на следующем рисунке. По сравнению с предыдущей схемой пределы перестройки частоты среза несколько сужены, все остальные рекомендации остаются в силе. Печатная плата не приводится - пусть это будет "домашним заданием".


Однако возможности простейших схем ограничены. Пассивный сумматор дает большое затухание сигнала, что заставляет использовать максимальную чувствительность усилителя. Кроме того, при работе от небуферизованного линейного выхода магнитолы (а в бюджетных линейках они все такие) возможно ухудшение разделения стереоканалов из-за невысокого входного сопротивления сумматора.
Поэтому нужно перейти к активному смесителю сигналов левого и правого каналов. Удобнее всего выполнить его на полевых транзисторах - при использовании транзисторов с напряжением отсечки более 3 вольт (КП303Г, КП303Е) необходимый режим работы достигается без смещения на затворе. В таком случае разделительный конденсатор на входе необязателен. А это дополнительное повышение качества звучания. Да и сами полевые транзисторы "благороднее".


Если встроенный фильтр усилителя устраивает, схему можно упростить.


И, наконец, когда есть все, что нужно и нужен только фазовращатель.


Наконец, если сабвуфер представляет сообой что-то более сложное, чем закрытый ящик, в канал усиления нужно включить фильтр обрезки инфранизких частот. Правда, для увеличения добротности пришлось выполнить его по схеме третьего порядка, хотя АЧХ соответствует второму.


В тех случаях, когда нужно встроить блок формирования сигнала сабвуфера непосредственно в усилитель, есть смысл перейти на двухполярное питание ОУ. Ниже приводится вариант схемы, дополненный входом высокого уровня и регулятором усиления. Резистор R18 определяет минимальный уровень выходного сигнала. Если нужно снижать его до нуля, резистор следует заменить перемычкой или снизить сопотивление до 100-200 Ом. Входные каскады и фильтр остались практически без изменений, но благодаря увеличению напряжения питания до 15 В несколько повышена перегрузочная способность. Небольшое изменение номиналов фильтра увеличило его добротность, как следствие - повысилась крутизна АЧХ непосредственно в зоне перегиба. При широкой полосе она приближается к фильтру третьего порядка. При налаживании нужно добиться, чтобы постоянное напряжение на эмиттере транзистора VT3 составляло 6-7 вольт.
Если нужно увеличить коэффициент передачи этого фильтра, можно зашунтировать резисторы в истоках полевых транзисторов электролитическими конденсаторами емкостью от 10 мкф и выше. Усиление возрастет примерно в 3 раза, но есть риск появления искажений.


Детали и монтаж
Для плавной регулировки частоты среза нужны резисторы с нелинейной зависимостью сопротивления (тип Б). В среднем пложении движка сопротивление одной половины "подковки" у них заметно больше, чем у другой. Включить их нужно так, чтобы движок закорачивал секцию с бОльшим сопротивлением.
Керамические конденсаторы в звуковом тракте использовать нельзя из-за микрофонного эффекта, их можно ставить только в цепи питания. Из недорогих и доступных лучше всего использовать полипропиленовые, фторопластовые или лавсановые. Например, К73-17 (от 0,01 до 6,8 мкф, напряжение от 50 до 630В, цена от 0,5 до 8 р за штуку в зависимости от размера и допуска). Конденсаторы нужно подобрать в пары с минимальным разбросом (важно не точное значение емкости, а рассогласование по каналам). Многие современные мультиметры позволяют измерить емкость непосредственно. Если такой возможности нет, лучше использовать конденсаторы с допуском 5%.
Полевые транзисторы по каналам нужно подбирать в пары по начальному току стока и напряжению отсечки. Если нет такой возможности, лучше использовать транзисторы из одной партии - в пределах упаковки разброс параметров обычно невелик. Вместо КП303 можно использовать сборки серии КПС, там идентичность пар обеспечивается технологически. Вместо КТ3102Е можно использовать любые другие n-p-n транзисторы с коэффициентом передачи тока более 50. Словом, возможности для творчества открываются широкие...
Чтобы избежать наводок, у транзисторов КП303 нужно соединить с общим проводом "земляную" ножку транзистора (вывод корпуса). Входные делители также должны быть как можно ближе к транзистору, чтобы в цепи "делитель-затвор" не было длинных проводников. Особенно важно это при высоком сопротивлении делителя.

Источник http://www.bluesmobil.com/shikhman/ А. И. Шихатов 1999-2003

Фильтры низких и высоких частот являются неотъемлемой частью любого усилителя. Устанавливаются они, как правило, рядом с электрической катушкой. Подвижные элементы в данном случае отсутствуют. К основным параметрам таких устройств относится показатель полосы пропускания. Дополнительно специалистами может быть рассчитан перехват сигнала. Если говорить про фильтры низких колебаний, то их чаще всего можно встретить в сабвуферах. В данном случае преобразователь занимается изменением высокочастотных волн.

Как сделать простой фильтр?

Для того чтобы собрать фильтр низких частот своими руками, сетку лучше всего изначально подбирать магнитную. Электрическая катушка в данном случае должна располагаться за резисторами. Чтобы увеличить полосу пропускания тока, используют специальный преселектор. Дополнительно он в устройстве исполняет роль проводника. Перехват сигнала у фильтра зависит исключительно от типов конденсаторов.

Наиболее распространенными на сегодняшний день принято считать полевые модели. Емкость у них в среднем колеблется в районе 3 пФ. Все это в конечном счете позволит стабилизировать коротковолновые импульсы в цепи. Для создания искусственных сигналов применяется ревербератор. Преобразование в данном случае должно происходить без изменения показателя предельной частоты.

Расчет фильтра

Расчет фильтра низких частот осуществляется через колебания среза. Дополнительно в формуле учитывается коэффициент передачи постоянного сигнала. Если говорить про активные типы фильтров, то емкость конденсаторов также берется во внимание. Для учета амплитуды колебаний дополнительно рассчитывается передаточная функция. Если частота выходного сигнала в конечном счете превышает первоначальные параметры, то коэффициент постоянного сигнала будет положительным.

Активные типы фильтров

Активный фильтр низких частот в первую очередь выделяется высокой полосой пропускания на уровне 5 Гц. Дополнительно в системе устанавливаются элементы для перехвата сигнала. Конденсаторы в данном случае припаиваются на специальной магнитной сетке. Для регулировки предельной частоты применяются транзисторы. Расширение возможностей устройства может осуществляться путем добавления в цепь конденсаторов. Емкость их должна составлять минимум 40 пФ.

Для положительной обратной связи применяется аналоговый модулятор. Устанавливается он в цепи только за конденсаторами. Колебательные контуры в системе можно стабилизировать при помощи стабилитронов. Пропускная способность их обязана составлять минимум 5 Гц. В данном случае параметр отрицательного сопротивления напрямую зависит от перекрытия диапазона частот.

Пассивные типы фильтров

Пассивный фильтр низких частот работает по принципу искажения колебаний. Происходит это путем установки ревербератора. Все элементы цепи в этом случае располагаются на магнитной сетке. Модуляторы в фильтрах используются самые разнообразные. Наиболее распространенными на сегодняшний день принято считать двухсторонние аналоги.

Периодическое изменение колебаний дополнительно может происходить путем изменения положения транзисторов. Конденсаторов всего у фильтра должно иметься три. В данном случае многое зависит от полосы пропускания непосредственно усилителя. Если этот параметр превышает 10 Гц, то конденсаторов в устройстве должно быть как минимум четыре.

Дополнительно перед их установкой рассчитывается предельное напряжение. Для этого необходимо взять номинальный ток блока питания и с учетом емкости конденсаторов соотнести его к поперечному траверсу. Чтобы минимизировать чувствительность фильтра, применяются специальные тетроды. Данные элементы являются довольно дорогими, однако качество прохождения сигнала значительно улучшается.

Устройства на резисторах ПР1

Фильтр низких частот первого порядка с указанными резисторами способен справляться с предельным сопротивлением на уровне 4 Ом. Все элементы цепи, как правило, располагаются на магнитной сетке. Конденсаторы можно устанавливать в систему самые разнообразные. В данном случае важно заранее просчитать показатель полосы пропускания. Если емкость конденсаторов превышает 2 пФ, то стабилитрон необходимо использовать обязательно.

Дополнительно некоторыми специалистами устанавливается ревербератор, который способен значительно снизить амплитуду колебаний. Промежуточная частота в данном случае довольно сильно зависит от сопряжения контуров. Номинальное напряжение блока питания обязано быть не ниже 20 В. Чтобы фильтр низких частот успешно справлялся с помехами, диоды в системе применяются кремниевого типа. Если блок питания устанавливается свыше 30 В, то транзисторы в конечном счете могут сгореть.

Как собрать модель с резисторами ПР2?

Простой фильтр низких частот с резисторами данного типа способен довольно успешно эксплуатироваться с блоком питания на 30 В. В этом случае параметр полосы пропускания обязан находиться на уровне не ниже 40 Гц. Положительная обратная связь в системе обеспечивается за счет стабильности колебаний.

Параметр отрицательного сопротивления во многом зависит от скважности импульсов. Расчет фильтра низких частот в данном случае необходимо проводить с учетом показателя концентрации. Конденсаторы в системе целесообразнее устанавливать емкостного типа. Диодные мосты в устройствах используются довольно редко. Обусловлено это именно отсутствием резонансных частот.

Модели с мощными преобразователями

Фильтры с мощными преобразователями позволяют значительно повысить коэффициент пропускания - до уровня 33 Гц. При этом отрицательное сопротивление в системе не будет превышать 4 Ом. Катушки в данном случае используются электрические. Подвижные элементы, в свою очередь, не применяются. Преселектор в фильтре, как правило, располагается сразу за катушкой. Чтобы минимизировать риски различных сбоев, используют специальные стабилитроны.

Резисторы в данном случае следует подбирать аналогового типа. Чтобы уменьшить обратную связь в устройстве, конденсаторы устанавливают попарно. В некоторых случаях стабилитроны применяются двухстороннего действия. Однако недостатки у них также имеются. В первую очередь среди них следует отметить довольно резкое повышение чувствительности устройства.

Устройства с емкостными конденсаторами

Фильтры с емкостными конденсаторами отличаются стабильностью настройки контура. При этом параметр полосы пропускания напрямую зависит от типа электрической катушки. Если рассматривать хроматические аналоги, то они выделяются высоким параметром предельной частоты. Дополнительно важно учитывать объем конденсаторов в фильтре. Скважность последовательности импульсов зависит только от типа преобразователя.

В некоторых случаях фильтр низких частот не работает из-за резкого повышения температуры. В данном случае необходимо дополнительно установить тиристор возле катушки. С инерционными усилителями фильтры данного типа не способны работать. Дополнительно следует учитывать, что блок питания предельное напряжение обязан выдерживать как минимум 30 В.

Модели с полевыми конденсаторами

Фильтр низких частот с использованием полевых конденсаторов является довольно распространенным. Во многом это связано с его дешевизной. В данном случае параметр полосы пропускания будет находиться на уровне 5 Гц. В свою очередь, отрицательное сопротивление цепи зависит от установленных транзисторов. Если использовать одноканальные элементы, то они позволят значительно сократить образцовое напряжение.

Отклонение фактической индуктивности у фильтра зависит от чувствительности прибора. Стабилитроны в системе применяются довольно редко. Однако если параметр отрицательного сопротивления превышает 5 Ом, то их следует использовать. Дополнительно можно задуматься над применением тиристоров. Во многом данные элементы позволят справиться с дипольностью в системе. Таким образом, чувствительность прибора значительно снизится.

Как использовать продольный резонатор?

Продольные резонаторы в фильтрах устанавливаются довольно редко. Предназначены данные устройства для повышения сопряжения контуров. В результате параметр полосы пропускания может увеличиться до 40 Гц. Чтобы система работала должным образом, дополнительно устанавливаются стабилитроны. Преселекторы в данном случае будут бесполезными. Также перед установкой стабилитрона необходимо задуматься о параметре отрицательного сопротивления.

Если он превышает 5 Ом, то необходимо использовать емкостные конденсаторы. Минимизация сбоев в системе может осуществляться несколькими способами. Наиболее популярными из них принято считать установку триггеров. Дополнительно многие специалисты советуют возле катушек размещать специальные ограничители. Данные устройства в конечном счете позволят резонатору работать более стабильно.

Применение диэлектрических резисторов в схеме

Диэлектрические резисторы в фильтрах не являются большой редкостью. Предназначены они для того, чтобы понижать параметр отрицательного сопротивления. При этом использовать мощные блоки питания есть возможность. Диоды в данном случае применяются в основном опорного типа. Согласование резонансных частот зависит исключительно от отдачи резистора.

Конденсаторы для фильтра подбираются с емкостью не менее 5 пФ. Это необходимо для того, чтобы повысить параметр полосы пропускания как минимум до 3 Гц. Все это в конечном счете позволит привести в норму чувствительность прибора. Дополнительно для расчета фильтра применяется показатель образцового напряжения. В среднем он находится на уровне 30 В. Если тиристоры в системе не использовать, то резисторы в конечном счете могут пострадать.

Модели с модуляторами

Фильтр низких частот с модулятором необходим для того, чтобы у пользователя была возможность настраивать прибор. При этом параметр полосы пропускания у таких устройств может быть различным. Устанавливается модулятор, как правило, на магнитной сетке. Преселектор на пару с вышеуказанным элементом использоваться может. Дополнительно следует отметить, что модулятор в некоторых случаях способен создавать низковолновые помехи. Обусловлено это повышением образцового напряжения. Чтобы минимизировать риски, в данном случае лучше рядом с модулятором устанавливать средней мощности стабилитрон.

Широкополосные резисторы для фильтров

Усилитель-фильтр низких частот с широкополосными резисторами имеет как преимущества, так и явные недостатки. Если рассматривать достоинства, то важно отметить его высокую пропускную способность. Соединение катода в данном случае осуществляется через маленькую пластину. Недостатком таких резисторов принято считать повышенную чувствительность.

В результате работа конденсаторов значительно усложняется. В некоторых случаях дополнительно оказывается нагрузка на электрическую катушку. В любом случае, чтобы минимизировать риски, важно сделать расчет фильтра. Для этого учитывается не только коэффициент пропускания, но и емкость конденсаторов, которые установлены в системе.

Сегодня сабвуфер - неотъемлемая часть любого домашнего кинотеатра. Впрочем, не только домашнего. В публичных кинотеатрах тоже стоят сабвуферы. Их задача с максимальной реалистичностью воспроизводить звуки выстрелов, взрывов, грохота проползающего по экрану танка или проплывающего в экранном холодном космическом пространстве межзвездного галактического имперского крейсера. Да, да, я знаю, что крейсеры в космическом пространстве проплывают бесшумно, но у Джорджа Лукаса, который снял потрясающую киноэпопею «Звездные войны» на этот счет совершенно другое мнение. И это правильное мнение, поскольку одно дело смотреть на безмолвный имперский крейсер, а другое - слышать и даже ощущать проход мощной машины. Да, про ощущать я не оговорился, ибо низкочастотные вибрации, создаваемые мощным сабвуфером, ощущаются буквально всем телом.

Собственно, сам сабвуфер является мощным низкочаcтотным динамиком, подключенным к специальному сабвуферному каналу многоканальной системы усилителей. Сабвуферный канал при записи звуковой дорожки к фильму пишется отдельно, так что вся информация в нем содержащаяся - это исключительно о том, где и когда надо бахнуть, и с какой силой. Но это в случае цифровой записи сигнала. При аналоговой записи-воспроизведении сигнал сабвуферного канала может выделяться из общего сигнала фонограммы при помощи специального Фильтра Низких Частот - ФНЧ.

В общем случае именно ФНЧ формирует сигнал сабвуферного канала, и именно от его параметров зависит насколько мощно, сочно, четко будет бабахать сабвуфер. Разумеется, не только от ФНЧ, но и от акустического оформления самого сабвуфера зависит, насколько высоко вы будете подпрыгивать в кресле от очередного киношного выстрела или взрыва, но сейчас мы рассмотрим именно ФНЧ.

Два самых главных параметра ФНЧ называются: частота среза и крутизна спада.

Начнем с первой.

Дело в том, что динамик сабвуфера большой, тяжелый, неповоротливый, чаще всего с огромным диффузором, который призван создавать большое звуковое давление, вдавливающее зрителя в кресло. Амплитуда колебаний этого диффузора должна быть достаточно велика, поэтому на сабвуфер подается очень приличная мощность от выходного усилителя. Если мы не отфильтруем ВЧ составляющие сигнала, подаваемого на динамик, то просто спалим его, ибо он физически не сможет так быстро двигаться, в результате чего катушка динамика перегреется и разрушится.

Таким образом, наш ФНЧ занимается тем, что просто отрезает от входного сигнала ненужные для сабвуфера куски частотного диапазона и на выходе оставляет только те, которые не угробят сабвуфер и будут эффективно им воспроизводиться.

Посмотрим на амплитудно-частотную характеристику ФНЧ (ура, первая картинка!):

Итак, частота среза, выражаясь человеческим языком - это та частота, за которой амплитуда выходного сигнала резко падает. Посмотрите на левую картинку: так должен выглядеть идеальный ФНЧ - до определенной частоты сигнал есть, после нее сигнала нет. Но реальность, как обычно, несколько хуже. На правой картинке показана работа реального ФНЧ. Частота, на которой уровень выходного сигнала ослабляется на 3 дБ называется частотой среза ФНЧ - Fср. на картинке. Как видно по правой картинке, реальный ФНЧ ослабляет сигнал за частотой среза не сразу, а постепенно и тут у нас есть возможность перейти ко второй основной характеристике ФНЧ - крутизне спада.

Общеизвестно, что погоня за идеальным - самая большая ошибка человечества. Тем не менее, человечество не перестает за ним гнаться, набивая по пути знатные шишки.

С ФНЧ такая же история. Как вы видите на картинке выше, у идеального ФНЧ АЧХ поворачивает на 90 градусов на частоте среза, то есть, ни одна капелька сигнала за частотой среза не появится на выходе ФНЧ. Это - идеальная крутизна спада ФНЧ.

У любого реального ФНЧ данная характеристика более пологая и никогда не станет идеальной, но может максимально к ней приблизиться.

Посмотрим на второй рисунок - на нем отображены крутизна спада ФНЧ в зависимости от так называемого порядка ФНЧ - числа звеньев, из которых состоит фильтр.

Чем больше звеньев в ФНЧ, чем ближе его АЧХ к идеальной. Но тут надо заметить, что увеличение числа звеньев фильтра приводит к его схемотехническому усложнению и как следствие, увеличению количества электронных компонентов, из которых сделан фильтр, а следом и цены этого устройства. Помимо этого, разумеется, растут шум, искажения, уменьшается амплитуда выходного сигнала.

Простейшее звено ФНЧ выглядит следующим образом:

Это пассивный ФНЧ первого порядка. Включая такие звенья последовательно можно добиться весьма существенной крутизны спада. Но при этом, как уже отмечалось выше, существенно растут шумы и искажения в звуковом тракте. Более того, для согласования входного и выходного сопротивления такого фильтра необходимо на входе и выходе ФНЧ устанавливать буферные усилители. В противном случае сопротивление источника сигнала и сопротивление нагрузки фильтра будет существенно влиять на частоту среза.

Поэтому, чаще всего для построения ФНЧ используют схемы активного фильтра на операционных усилителях.

Вот, например, активный ФНЧ второго порядка:

Не смотря на простоту самого фильтра необходимо помнить о буферных усилителях, которые нужны и для этого типа ФНЧ. Да и к тому же, 2 порядок - это как-то маловато, а значит, нужно последовательное включение двух таких фильтров.

В общем, схема разрастется прилично.

Более того. Если вы только начинаете заниматься сабвуферами и всем, что с ними связано, непременно начнете читать профильные сайты и форумы, где обсуждаются те или иные способы построения ФНЧ. И тут выяснится, что помимо всего прочего есть фильтр Чебышева, фильтр Баттерворта, эллиптический фильтр, фильтр Саллена-Ки. И у каждого схемного решения есть свои плюсы и минусы. Честно говоря, закопаться можно запросто.

Видимо, поглядев на все это в древнерусской тоске, тайваньская компания PTC почесала в затылке и выпустила отличную микросхему - PT2351 - фильтр НЧ Саллена-Ки третьего порядка.

Микросхема в 8-выводном корпусе содержит в себе все элементы, необходимые для построения ФНЧ с очень приличными характеристиками.

Стерео сигнал от источника поступает на два буферных усилителя с высоким входным сопротивлениям. Сигнал смешивается и нормируется по уровню в смесителе, после чего поступает собственно на ФНЧ с встроенным выходным буферным каскадом (выходное сопротивление - всего 40 Ом), позволяющим подключать фильтр непосредственно к нагрузке без дополнительных плясок с буфером на ОУ.

Частота среза такого фильтра задается внешними конденсаторами.

На основе этой микросхемы был разработан набор для самостоятельной сборки NM0103 "ФНЧ для сабфувера" .

Основные технические характеристики:

Принципиальная схема:

Как видите, схема простейшая, с очень небольшим количеством навесных компонентов.

Схема универсальная - благодаря встроенному стабилизатору напряжения VD1, R3, C6, этот ФНЧ может применяться как для построения автомобильного сабвуфера, так и для домашнего кинотеатра или музыкальных систем 2.1. Максимальное напряжение питания, которое можно подавать на фильтр - 20 Вольт. Впрочем, если увеличить резистор R3, то можно и больше.

Питание однополярное, что серьезно облегчает встраивание такого фильтра в уже имеющийся звуковой тракт.

Частота среза фильтра определяется емкостью конденсаторов C3, C7. В наборе есть два комплекта конденсаторов разной емкости для построения ФНЧ с частотой среза 60 Гц или 80 Гц.

АЧХ фильтра:

Ну, а если номиналы конденсаторов, входящих в набор, вас по каким-то причинам не устроят, их можно выбрать из нижеследующей таблицы:

Часть номиналов конденсаторов получается нестандартной и составляется из двух конденсаторов стандартной емкости; номиналы указаны в скобках.

Из недостатков данной схемы по сравнению со схемами на ОУ можно отметить невозможность плавной регулировки частоты среза, а так же отсутствие регулировки фазы выходного сигнала. Но вот часто ли нужны такие регулировки?

» — имеется в виду активный фильтр нижних частот. Он особенно полезен при расширении стереофонической звуковой системы на дополнительный динамик воспроизводящий только самые низкие частоты. Данный проект состоит из активного фильтра второго порядка с регулируемой граничной частотой 50 — 250 Гц, входного усилителя с регулировкой усиления (0.5 — 1.5) и выходных каскадов.

Конструкция обеспечивает прямое подключение к усилителю с мостовой схемой, так как сигналы сдвинуты относительно друг друга по фазе на 180 градусов. Благодаря встроенному источнику питания, стабилизатору на плате, можно обеспечить питание фильтра симметричным напряжением от усилители мощности — как правило это двухполярка 20 — 70 В. Фильтр НЧ идеально подходит для совместной работы с промышленными и самодельными усилителями и предусилителями.

Принципиальная схема ФНЧ

Схема фильтра для сабвуфера показана на рисунке. Работает он на основе двух операционных усилителей U1-U2 (NE5532). Первый из них отвечает за суммирование и фильтрацию сигнала, в то время как второй обеспечивает его кэширование.

Принципиальная схема ФНЧ к сабу

Стереофонический входной сигнал подается на разъем GP1, а дальше через конденсаторы C1 (470nF) и C2 (470nF), резистора R3 (100k) и R4 (100k) попадает на инвертирующий вход усилителя U1A. На этом элементе реализован сумматор сигнала с регулируемым коэффициентом усиления, собранный по классической схеме. Резистор R6 (27k) вместе с P1 (50k) позволяют провести регулировку усиления в диапазоне от 0.5 до 1.5, что позволит подобрать усиления сабвуфера в целом.

Резистор R9 (100k) улучшает стабильность работы усилителя U1A и обеспечивает его хорошую поляризацию в случае отсутствия входного сигнала.

Сигнал с выхода усилителя попадает на активный фильтр нижних частот второго порядка, построенный U1B. Это типичная архитектура Sallen-Key, которая позволяет получить фильтры с разной крутизной и амплитудной. На форму этой характеристики напрямую влияют конденсаторы C8 (22nF), C9 (22nF) и резисторы R10 (22k), R13 (22k) и потенциометр P2 (100k). Логарифмическая шкала потенциометра позволяет добиться линейного изменения граничной частоты во время вращения ручки. Широкий диапазон частот (до 260 Гц) достигается при крайнем левом положении потенциометра P2, поворачивая вправо вызываем сужения полосы частот до 50 Гц. На рисунке далее показана измеренная амплитудная характеристика всей схемы для двух крайних и среднего положения потенциометра P2. В каждом из случаев потенциометр P1 был установлен в среднем положении, обеспечивающим усиление 1 (0 дб).

Сигнал с выхода фильтра обрабатывается с помощью усилителя U2. Элементы C16 (10pF) и R17 (56k) обеспечивают стабильную работу м/с U2A. Резисторы R15-R16 (56k) определяют усиление U2B, а C15 (10pF) повышает его стабильность. На обоих выходах схемы используются фильтры, состоящие из элементов R18-R19 (100 Ом), C17-C18 (10uF/50V) и R20-R21 (100k), через которые сигналы поступают на выходной разъем GP3. Благодаря такой конструкции, на выходе мы получаем два сигнала сдвинутых по фазе на 180 градусов, что позволяет осуществлять прямое подключение двух усилителей и усилителя с мостовой схемой.

В фильтре используется простой блок питания с двухполярным напряжением, основанный на стабилитронах D1 (BZX55-C16V), D2 (BZX55-C16V) и двух транзисторах T1 (BD140) и T2 (BD139). Резисторы R2 (4,7k) и R8 (4,7k) представляют собой ограничители тока стабилитронов, и были подобраны таким образом, чтобы при минимальном напряжении питания ток составлял около 1 мА, а при максимальном был безопасен для D1 и D2.

Элементы R5 (510 Ом), C4 (47uF/25V), R7 (510 Ом), C6 (47uF/25V) представляют собой простые фильтры сглаживания напряжения на базах T1 и T2. Резисторы R1 (10 Ом), R11 (10 Ом) и конденсаторы C3 (100uF/25V), C7 (100uF/25V) представляют собой также фильтр напряжения питания. Разъем питания — GP2.

Подключение сабвуферного фильтра

Стоит отметить, что модуль фильтра для сабвуфера должен быть присоединен к выходу предварительного усилителя после регулятора громкости, что позволит улучшить регулировку громкости всей системы. Потенциометром усиления можно отрегулировать соотношение громкости сабвуфера к громкости всего сигнального тракта. К выходу модуля необходимо подключить любой усилитель мощности, работающий в классической конфигурации, . При необходимости используйте только один из выходных сигналов, сдвинутых по фазе на 180 градусов относительно друг друга. Оба выходные сигнала можно использовать, если нужно построить усилитель в мостовой конфигурации.