ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Регулируемый стабилизатор напряжения для зарядного устройства. Зарядное устройство с токовой стабилизацией Электронные схемы кравцова виталия

В этой статье поговорим еще об одном зарядном устройстве для автомобиля. Заряжать будем аккумуляторы стабильным током. Схема зарядного изображена на рисунке 1.

В качестве сетевого трансформатора в схеме применен перемотанный трансформатор от лампового телевизора ТС-180, но подойдут и ТС-180-2 и ТС-180-2В. Для перемотки трансформатора сначала его аккуратно разбираем, не забыв при этом заметить какими сторонами был склеен сердечник, путать положение U-образных частей сердечника нельзя. Затем сматываются все вторичные обмотки. Экранирующую обмотку, если будете пользоваться зарядным только дома, можно оставить. Если же предполагается использование устройства и в других условиях, то экранирующая обмотка снимается. Снимается так же и верхняя изоляция первичной обмотки. После этого катушки пропитываются бакелитовым лаком. Конечно пропитка на производстве происходит в вакуумной камере, если таких возможностей нет, то пропитаем горячим способом – в горячий лак, разогретый на водяной бане, бросаем катушки и ждем с часик, пока они не пропитаются лаком. Потом даем лишнему лаку стечь и ставим катушки в газовую духовку с температурой порядка 100… 120˚С. В крайнем случае обмотку катушек можно пропитать парафином. После этого восстанавливаем изоляцию первичной обмотки той же бумагой, но тоже пропитанной лаком. Далее мотаем на катушки по… сейчас посчитаем. Для уменьшения тока холостого хода, а он явно возрастет, так как необходимой ферропасты для склеивания витых, разрезных сердечников у нас нет, будем использовать все витки обмоток катушек. И так. Число витков первичной обмотки (см. таблицу) равно 375+58+375+58 = 866витков. Количество витков на один вольт равно 866витков делим на 220 вольт получаем 3,936 ≈ 4витка на вольт.


Вычисляем количество витков вторичной обмотки. Зададимся напряжением вторичной обмотки в 14 вольт, что даст нам на выходе выпрямителя с конденсаторами фильтра напряжение 14 √2 = 19,74 ≈ 20вольт. Вообще, чем меньше это напряжение, тем меньшая бесполезная мощность в виде тепла будет выделяться на транзисторах схемы. И так, 14 вольт умножаем на 4витка на вольт, получаем 56 витков вторичной обмотки. Теперь зададимся током вторичной обмотки. Иногда требуется быстрехонько подзарядить аккумулятор, а значит требуется увеличить на некоторое время зарядный ток до предела. Зная габаритную мощность трансформатора – 180Вт и напряжение вторичную обмотки, найдем максимальный ток 180/14 ≈ 12,86А. Максимальный ток коллектора транзистора КТ819 – 15А. Максимальная мощность по справочнику данного транзистора в металлическом корпусе равна 100Вт. Значит при токе12А и мощности 100Вт падение напряжения на транзисторе не может превышать… 100/12 ≈ 8,3 вольта и это при условии, что температура кристалла транзистора не превышает 25˚С. Значит нужен вентилятор, так как транзистор будет работать на пределе своих возможностей. Выбираем ток равный 12А при условии, что в каждом плече выпрямителя уже будет стоять по два диода по 10А. По формуле:

0,7 умножаем на 3,46, получаем диаметр провода?2,4мм.

Можно уменьшить ток до 10А и применить провод диаметром 2мм. Для облегчения теплового режима трансформатора вторичную обмотку можно не закрывать изоляцией, а просто покрыть дополнительно еще слоем бакелитового лака.

Диоды КД213 устанавливаются на пластинчатые радиаторы 100×100х3мм из алюминия. Их можно установить непосредственно на металлический корпус зарядного через слюдяные прокладки с использованием термопасты. Вместо 213- х можно применить Д214А, Д215А, Д242А, но лучше всего подходят диоды КД2997 с любой буквой, типовое значение прямого падения напряжения у которых равно 0,85В, значит при токе заряда 12А на них выделится в виде тепла 0,85 12 = 10Вт. Максимальный выпрямленный постоянный ток этих диодов равен 30А, да и стоят они не дорого. Микросхема LM358N может работать с напряжениями входного сигнала близкими к нулю, отечественных аналогов я не встречал. Транзисторы VT1 и VT2 можно применить с любыми буквами. В качестве шунта применена полоска из луженой жести. Размеры моей полоски вырезанной из консервной банки ()– 180×10х0,2мм. При указанных на схеме номиналах резисторов R1,2,5 ток регулируется в пределах примерно от 3 до 8А. Чем меньше номинал резистора R2, тем больше ток стабилизации устройства. Как рассчитать добавочное сопротивление для вольтметра прочитайте .

Об амперметре. У меня, полоска вырезанная по указанным выше размерам, совершенно случайно имеет сопротивление 0,0125Ом. Значит при прохождении через ее тока в 10А, на ней упадет U=I R = 10 0,0125=0,125В = 125млВ. В моем случае примененная измерительная головка имеет сопротивление 1200 Ом при температуре 25˚С.

Лирическое отступление. Многие радиолюбители, основательно подгоняя шунты для своих амперметров, почему то никогда не обращают внимание на температурную зависимость всех элементов собираемых ими схем. Разговаривать на эту тему можно до бесконечности, я вам приведу лишь небольшой пример. Вот активное сопротивление рамки моей измерительной головки при разных температурах. И для каких условий рассчитывать шунт?

Это означает, что ток выставленный в домашних условиях, не будет соответствовать току выставленном по амперметру в холодном гараже зимой. Если вам это по барабану, то сделайте просто переключатель на 5,5А и 10… 12А и ни каких приборов. И не бойся, как бы их не разбить, это еще один большой плюс зарядного устройства со стабилизацией тока заряда.

И так, дальше. При сопротивлении рамки равном 1200Ом и токе полного отклонения стрелки прибора 100мкА нам нужно подать на головку напряжение 1200 0,0001=0,12В = 120млВ, что меньше, чем падение напряжения на сопротивлении шунта при токе 10А. Поэтому последовательно измерительной головке поставьте дополнительный резистор, лучше подстроечный, что бы не мучиться с подборкой.

Монтаж стабилизатора выполнен на печатной плате (см. фото 3). Максимальный ток заряда для себя я ограничил шестью амперами, поэтому при токе стабилизации 6А и падении напряжения на мощном транзисторе 5В, выделяемая мощность при этом равна 30Вт, и обдуве вентилятором от компьютера, данный радиатор нагревается до температуры 60 градусов. С вентилятором это много, необходим более эффективный радиатор. Примерно определить необходимую . Мой вам всем совет — ставьте радиаторы рассчитанные для работы ПП приборов без куллеров, пусть лучше размеры прибора увеличатся, но при остановке этого куллера, ни чего не сгорит.

При анализе выходного напряжения осциллограмма его была сильно зашумлена, что говорит о нестабильности работы схемы т.е. схема подвозбуждалась. Пришлось дополнить схему конденсатором С5, что обеспечило стабильность работы устройства. Да, еще, для того, что бы уменьшить нагрузку на КТ819, я уменьшил напряжение на выходе выпрямителя до 18В (18/1,41 = 12,8В т.е. напряжение вторичной обмотки у моего трансформатора равно 12,8В). Скачать рисунок печатной платы. До свидания. К.В.Ю.

Кому некогда «заморачиваться» со всеми нюансами зарядки автомобильного аккумулятора, следить за током зарядки, вовремя отключить, чтоб не перезарядить и т.д., можно порекомендовать простую схему зарядки автомобильного АКБ с автоматическим отключением при полной зарядке аккумулятора. В этой схеме используется один не мощный транзистор для определения напряжения на аккумуляторе.

Схема простого автоматического зарядного устройства автомобильного аккумулятора

Список необходимых деталей:

  • R1 = 4,7 кОм;
  • Р1 = 10K подстроечный;
  • T1 = BC547B, КТ815, КТ817;
  • Реле = 12В, 400 Ом, (можно автомобильное, например: 90.3747);
  • TR1 = напряжение вторичной обмотки 13,5-14,5 В, ток 1/10 от емкости АКБ (например: АКБ 60А/ч — ток 6А);
  • Диодный мост D1-D4 = на ток равный номинальному току трансформатора = не менее 6А (например Д242, КД213, КД2997, КД2999 …), установленные на радиаторе;
  • Диоды D1(параллельно реле), D5,6 = 1N4007, КД105, КД522…;
  • C1 = 100uF/25V.
  • R2, R3 — 3 кОм
  • HL1 — АЛ307Г
  • HL2 — АЛ307Б

В схеме отсутствует индикатор зарядки, контроля тока (амперметр) и ограничение зарядного тока. При желании можно поставить на выход амперметр в разрыв любого из проводов. Светодиоды (HL1 и HL2) с ограничительными сопротивлениями (R2 и R3 — 1 кОм) или лампочки параллельно С1 «сеть», а к свободному контакту RL1 «конец заряда».

Изменённая схема

Ток, равный 1/10 от ёмкости АКБ подбирается количеством витков вторичной обмотки трансформатора. При намотке вторички трансформатора необходимо сделать несколько отводков для подбора оптимального варианта зарядного тока.

Заряд автомобильного (12-ти вольтового) аккумулятора считается законченным, когда напряжение на его клеммах достигнет 14,4 вольт.

Порог отключения (14,4 вольт) устанавливается подстроечным резистором Р1 при подключенном и полностью заряженном аккумуляторе.

При зарядке разряженного аккумулятора напряжение на нём будет около 13В, в процессе зарядки ток будет падать, а напряжение возрастать. Когда напряжение на аккумуляторе достигнет 14,4 вольт, транзистор Т1 отключит реле RL1 цепь заряда будет разорвана и АКБ отключится от зарядного напряжения с диодов D1-4.

При снижении напряжения до 11,4 вольт, зарядка снова возобновляется, такой гистерезис обеспечивают диоды D5-6 в эмиттере транзистора. Порог срабатывания схемы становится 10 + 1,4 = 11,4 вольт, которые могут быть рассмотрены как для автоматического перезапуска процесса зарядки.

Такое самодельное простое автоматическое автомобильное зарядное устройство поможет Вам проконтролировать процесс зарядки, не проследить окончание зарядки и не перезарядить свой аккумулятор!

Использованы материалы сайта:homemade-circuits.com

Другой вариант схемы зарядного устройства для 12-ти вольтового автомобильного аккумулятора с автоматическим отключением по окончании зарядки

Схема немного сложнее предыдущей, но с более чётким срабатыванием.

Таблица напряжений и процент разряженности АКБ, не подключенных к зарядному устройству


П О П У Л Я Р Н О Е:

    Описания осциллографических приставок к телевизору уже публиковались на страницах журнала («Радио», 1959, № 1; 1965, № 8 и др.). Однако в отличие от них предлагаемая приставка не требует вмешательства в схему телевизора (она подключается к антенному гнезду телевизора). Совместно с генератором качающейся частоты ее можно использовать для налаживания усилителей ПЧ радиоприемников.

    Аккумулятор — достаточно дорогая деталь автомобиля. Поэтому за ней нужен уход и контроль! Ниже рассмотрим индикатор, который предназначен для контроля за напряжением автомобильной аккумуляторной батареи. Он контролирует напряжение бортовой сети автомобиля и от неё же питается.

ЗАРЯДНЫЕ УСТРОЙСТВА ДЛЯ АВТОМОБИЛЬНЫХ АККУМУЛЯТОРОВ

Схемы зарядных устройств для автомобильных аккумуляторов довольно распространены и каждая обладает своими достоинствами и недостатками. Большинство простейших схем зарядных устройств построено по принципу регулятора напряжения с выходным узлом, собранным на тиристорах или мощных транзисторах. Эти схемы обладают существенными недостатками - ток заряда непостоянен и зависит от достигнутого на аккумуляторе напряжения. Большое количество схем не имеет защиты от короткого замыкания выхода, что приводит к пробою выходных силовых элементов. Предлагаемая схема лишена этих недостатков, достаточно надёжна (разработана в 1995 г. и изготовлена в количестве около 20 экземпляров, ни разу не выходивших из строя) и рассчитана на повторение радиолюбителями "среднего уровня".

Устройство обеспечивает ток заряда до 6А, контроль тока и напряжения с помощью стрелочного индикатора, защиту от короткого замыкания и автоматическое отключение через заданное время с помощью таймера. Схема состоит из формирователя пилообразного напряжения (транзисторы VT1, VT2), компаратора DA1, усилителя сигнала с токоизмерительного шунта на операционном усилителе DA2 и выходных силовых тиристоров VD5, VD6, которые установлены на небольшие радиаторы, в качестве которых можно использовать металлический корпус устройства. Настройка схемы производится в несколько этапов: 1. Осциллографом замеряется амплитуда "пилы" на переменном резисторе R6, которая должна быть около 2В, в противном случае подбором резистора R4 её доводят до этого значения. Далее нагружают шунт R18 током 6А и подбором резисторов R15, R17 добиваются уровня напряжения на входе 3 компаратора, равному амплитуде пилообразного напряжения (2В) - после этого зарядное устройство начинает нормально регулировать выходной ток. 2. К выходу устройства последовательно с внешним образцовым амперметром подключают заряжаемый аккумулятор, регулятором тока устанавливают значение 3 ... 6 А, а тумблер зарядного устройства переключают в положение "ток". Подбором резистора R14 добиваются правильных показаний тока по шкале встроенного прибора. 3. Аккумулятор подключают напрямую к выходу зарядного устройства и контролируют напряжение на нём с помощью внешнего образцового вольтметра. Подбором резистора R20 добиваются правильных показаний встроенного стрелочного прибора по шкале напряжений. На этом настройка закончена. В качестве измерительного прибора можно использовать любую доступную головку, линейную шкалу которой необходимо заранее подготовить. Шунт R18 можно изготовить из отрезка нихромовой проволоки диаметром около 2 мм и длиной около15 см. Точность установки сопротивления не играет большой роли, т.к. подбором резисторов R15, R17 устанавливается необходимая величина сигнала на выходе DA2 . При недостаточно надёжном запуске тиристоров конденсатор С6 можно удалить, а резистор R11 заменить на двухваттный, номиналом 510 Ом... 1кОм. Таймер отдельной настройки не требует, при желании его можно не изготавливать - остальная часть схемы не изменится. Основные электронные элементы собраны на печатной плате.


Эта схема прошла испытание временем, не содержит дефицитных или малораспространённых элементов, но за истекший период появилась новая доступная элементная база, позволяющая построить источники питания с более высокими характеристиками. Схемы, приведённые на следующих страницах раздела разрабатывались сравнительно недавно, используют доступные в настоящее время элементы и подходят для повторения радиолюбителями среднего уровня:

Мне пришлось совсем недавно самостоятельно соорудить зарядное устройство для автомобильного аккумулятора с током 3 – 4 ампер. Конечно мудрить, что то не желания, не времени не было и в первую очередь вспомнилась мне схема стабилизатора зарядного тока. По этой схеме очень просто и надежно сделать зарядное устройство.

Вот сама схема для зарядного устройства:

Установлена была старая микросхема (К553УД2), она хоть и старая, просто время не было опробовать новые, да и к тому же она оказалась под рукой. Шунт от старого тестера прекрасно подошел на место резистора R3. Резистор можно конечно и самим изготовить из нихрома, но при этом сечение должно быть достаточным, чтобы выдержать через себя ток и не накалиться до предела.

Устанавливаем шунт параллельно амперметру, подбираем его учитывая размеры измерительной головки. Собственно и устанавливаем мы его на саму клемму головки.

Таким образом выглядит печатная плата стабилизатора тока зарядного устройства:

Трансформатор может быть применен любой от 85 вт и выше. Обмотка вторичная должна быть на напряжение 15 вольт, а сечение провода должно начинаться от 1,8 мм (диаметр по меди). На место выпрямительного моста подошел 26МВ120А. Может он большеват для такого типа конструкции, зато устанавливать его очень просто, прикрутил и надел клеммы. Можно и установить любой диодный мост. Для него главная задача – выдержать соответствующий ток.

Корпус можно сделать из чего угодно, у меня хорошо подошел корпус от старой магнитолы. Для хорошего пропуска воздуха на верхней крышке просверлил дырки. Вместо передней панели был установлен лист текстолита. Шунт, тот что на амперметре надо отрегулировать опираясь на показания тестового амперметра.

На заднюю стенку радиатора крепим транзистор.

Ну вот мы собрали стабилизатор тока, теперь надо проверить его, закоротив между собой (+) и (-). Регулятор должен обеспечить плавную регулировку во всём диапазоне зарядного тока. Если нужно, можно воспользоваться подбором резистора R1.

Важно помнить что все напряжение поступает на регулировочный транзистор и он сильно нагревается! Как только проверили, размыкаем перемычку!

Все готово и можно теперь воспользоваться таким зарядным устройством, которое во всем диапазоне зарядки стабильно будет поддерживать ток. Необходимо следить за показанием напряжения на аккумуляторе по вольтметру, так как такое зарядное устройство не имеет автоматического отключения, после окончания зарядки.

Уважаемые дамы и господа, сегодня хочу вам представить конструкцию простого зарядного устройства для зарядки автомобильных аккумуляторов которое может повторить даже начинающий радиолюбитель. Не всем известно, что собственная система энергоснабжения не может зарядить аккумулятор авто полностью. Поэтому время от времени его нужно заряжать внешними устройствами. Известно, что для пуска двигателя в тёплую погоду хватит и 50% заряда, но если на улице минусовая температура, то емкость аккумулятора уменьшится почти в два раза. Если зимой мы об этом забудем - можем никуда не поехать вообще. Для того, чтобы избежать этих последствий нам нужно собрать зарядное устройство для авто. Ниже представлена схема такого зарядного устройства.

Схема зарядного устройства для авто

Его краткая характеристика:

  • Напряжения питания - 220 В.
  • Максимальное выходное напряжения - 16 В.
  • Выходной ток регулируется в пределах 0-7 А.

Схема проста и собрана всего на трех транзисторах, без применения микросхем. Печатную плату формата Lay можно . Трансформатор ТС-180 был взят от старого лампового телевизора. Перед применением его нужно перемотать. Итак, начнем. Вначале снимаем все обмотки кроме сетевых - они размещены на обеих половинках трансформатора. У нас получился две обмотки, нам нужна одна, поэтому соединяем их так: начало одной обмотки соединяем с концом второй.

Все, первичная обмотка готова, приступим к намотке вторичной - она содержит 38 витков на одной половинке трансформатора и 38 витков на второй половинке. А намотка ведётся медным проводом диаметром 2 мм. Они соединяются так как и первичная обмотка.

Трансформатор готов к использованию. Идём дальше. Диодный мост берем на соответствующий ток, я взял мощные диоды на 20 А с которых и сделал диодный мост. Вы можете использовать Д242-Д247 . Далее травим печатную плату зарядного для авто и монтируем на ней детали. На печатной плате буквой «У» обозначено место для пайки управляющего вывода тиристора. устанавливаем на плату, а между платой и тиристором ставим теплоотвод (на фото это видно). Плату и трансформатор устанавливаем в корпус.

Затем делаем корпус. На переднюю панель устанавливаем регулятор тока (R8), светодиод (Д5) который показывает « Сеть », выключатель S1 - который включает питания зарядного устройства, выключатель S2 « Включить нагрузку », зажимы для проводов и амперметр по котором контролируется ток заряда. Зарядное устройство в настройке не нуждается и работает сразу.