ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Жидкое топливо для ракет. Сага о ракетных топливах. при стехиометрическом соотношении компонентов

Ракетное топливо

НЕМНОГО ТЕОРИИ Из школьного курса физики (закон сохранения количества движения) известно, что если от покоящегося тела массой М отделится масса m со скоростью V то оставшаяся часть тела массой М-m будет двигаться со скоростью m/(M-m) x V в противоположном направлении. Значит, чем больше отбрасываемая масса и ее скорость,тем большую ско- рость приобретет оставшаяся часть массы т.е. тем больше будет сила приводящая ее в движение. Для работы ракетного двигателя (РД), как и любого реактивного, необходим источник энергии (топливо), рабочее тело (РТ) которое обеспечивает аккумулирование энергии источника ее перенос и преобразование) ,устройство в котором энергия пере- дается РТ и устройство в котором внутренняя энергия РТ преобразуется в кинетичес- кую энергию струи газов и передается ракете в виде силы тяги. Известны химические и нехимические топлива: у первых (жидкостные ракетные дви- гатели - ЖРД и ракетные двигатели твердого топлива - РДТТ) необходимая для работы двигателя энергия выделяется в результате химических реакций, а образующиеся при этом газообразные продукты служат рабочим телом, у вторых для нагрева рабочего тела используются другие источники энергии (например ядерная энергия). Эффективность РД, как и эффективность топлива измеряется его удельным импуль- сом. Удельный импульс тяги (удельная тяга), определяемый как отношение силы тяги к секундному массовому расходу рабочего тела. Для ЖРД и РДТТ расход рабочего тела совпадает с расходом топлива и удельный импульс является величиной обратной удель- ному расходу топлива. Удельный импульс характеризует эффективность РД - чем он больше тем меньше топлива (в общем случае - рабочего тела) расходуется на создание единицы тяги. В системе СИ удельный импульс измеряется в м/сек и практически сов- падает по величине со скоростью реактивной струи. В технической системе единиц (другое ее наименование МКГСС что значит: Метр - КилоГрамм Силы - Секунда), широко применявшейся в СССР, килограмм массы был производной единицей и определялся как масса которой сила в 1 кгс сообщает ускорение 1 м/сек за сек. Она называлась «техническая единица массы» и составляла 9,81 кг. Такая единица была неудобной, поэтому вместо массы использовали вес, вместо плотности - удельный вес и т.д. В ракетной технике при расчете удельного импульса также использовали не массовый а весовой расход топлива. В результате уделный импульс (в системе МКГСС) измерялся в секундах (по величине он в 9,81 раз меньше удельного «массового» импульса). Величина удельного импульса РД обратно пропорциональна квадратному корню мо- лекулярной массы рабочего тела и прямо пропорциональна квадратному корню из зна- чения температуры рабочего тела перед соплом. Температура рабочего тела определя- ется теплотворной способностью топлива. Максимальное ее значение для пары берил- лий+кислород составляет 7200 ккап/кг. что ограничивает величину максимального удельного импульса ЖРД величиной не более 500 сек. Величина удельного импульса зависит от термического коэффициента полезного действия РД - отношения кинетичес- кой энергии, сообщенной в двигателе рабочему телу, ко всей теплотворной способ- ности топлива. Преобразование теплотворной способности топлива в кинетическую энергию истекающей струи в двигателе происходит с потерями поскольку часть тепла уносится с истекающим рабочим телом, часть из-за неполного сгорания топлива не выделяется вовсе. Наиболее высокий удельный импульс имеют электрореактианые дви- гатели. У плазменного ЭРД он доходит до 29000 сек. Максимальный импульс серийных российских двигателей РД-107 составляет 314 сек, Характеристики РД на 90% определяются применяемым топливом. Ракетное топливо - вещество (одно или несколько), представляющих собой источник энергии и РТ для РД. Оно должно удовлетворять следующим основным требованиям: иметь высокий уд.импульс, высокую плотность, требуемое агрегатное состояние компонентов в условиях эксплуа- тации, должно быть стабильным, безопасным в обращении, нетоксичным, совместимым с конструкционными материалами, иметь сырьевые ресурсы и др. Большинство существу- ющих РД работает на химическом топливе. Основная энергетическая характеристика (уд. импульс) определяется количеством выделившейся теплоты (теплотворностью топлива) и химическим составом продуктов реакции, от которого зависит полнота преобразования тепловой энергии в кинетическую энергию потока (чем ниже молекулярная масса, тем выше уд.импульс). По числу раздельно хранимых компонентов химические ракетные топ- лива делятся на одно-(унитарные), двух-, трёх- и многокомпонентные, по агрегатному состоянию компонентов - на жидкие, твёрдые, гибридные, псевдожидкие, желеобразные. Однокомпонентные топлива - соединения типа гидразина N 2 H 4 , перекиси водорода Н 2 О 2 в камере РД распадаются с выделением большого количества теплоты и газообразных продуктов, обладают невысокими энергетическими свойствамивами. Например 100%-я перекись водорода имеет уд.импульс 145с. и применяется как вспомогательные топлива для систем управления и ориентации, приводов турбонасосов РД. Гелеобразные топлива - обычно загущенное солями высокомолекулярных органических кислот или специальными добавками горючее (реже окислитель). Повышение уд.импульса ракетных топлив дости- гается добавлением порошков металлов (Al и др.). Например "Сатурн-5" сжигает за время полета 36т. алюминиевого порошка. Наибольшее применение получили 2-х компо- нентные жидкие и твёрдые топлива. ЖИДКОЕ ТОПЛИВО Двухкомпонентное жидкое топливо состоит из окислителя и горючего. К жидким топливам предъявляются следующие специфические требования: возможно более широкий температурный интервал жидкого состояния, пригодность, по крайней мере, одного из компонентов для охлаждения жидкостного РД (термическая стабильность, высокие тем- пература кипения и теплоёмкость), возможность получения из основных компонентов генераторного газа высокой работоспособности, минимальная вязкость компонентов и малая зависимость её от температуры. Для улучшения характеристик в состав топлива вводятся различные присадки (металлы, например Be и Al для повышения уд.импульса, ингибиторы коррозии, стабилизаторы, активаторы воспламенения, вещества понижающие температуру замерзания). В качестве горючего используются керосин (лигроино-кероси- новые и керосино-газойлевые нефтяные фракции с диапазоном кипения 150-315°С), жид- кий водород, жидкий метан (CH 4), спирты (этиловый, фурфуриловый); гидразин (N 2 H 4), и его производные (диметилгидразин), жидкий аммиак (NH 3), анилин, метил-, диметил- и триметиламины и т.д. В качестве окислителя применяют: жидкий кислород, концентри- рованную азотную кислоту (HNO 3), азотный тетраксид (N 2 O 4), тетранитроме- тан; жидкие фтор, хлор и их соединения с кислородом и др. При подаче в камеру сго- рания компоненты топлива могут самовоспламеняться (конц.азотная кислота с анилином, азотный тетроксид с гидразином и др.)или нет. Применение самовоспламеняющихся топ- лив упрощает конструкцию РД и позволяет наиболее просто осуществлять многоразовые запуски. Максимальный уд.импульс имеют пары водород-фтор(412с), водород-кислород (391с). С точки зрения химии идеальный окислитель – жидкий кислород. Он использо- вался в первых балистических ракетх ФАУ,ее американских и советских копиях. Но его температура кипения (-183 0 С) не устраивала военных. Требуемый диапазон рабочих температур от –55 0 С до +55 0 С. Азотная кислота –другой очевидный окислитель для ЖРД больше устраивала военных. Она имеет высокую плотность,невысокую стоимость, производится в больших количествах, достаточно стабильна, в том числе при высоких температурах, пожаро- и взрывобезопасна. Главное ее преимущество перед жидким кис- лородом в высокой температуре кипения, а следовательно в возможности неограниченно долго храниться без всякой теплоизоляции. Но азотная кислота настолько агрессивное вещество, что непрерывно реагирует само с собой – атомы водорода отщепляются от одной молекулы кислоты и присоединяются к соседним, образуя непрочные, но чрезвы- чайно химически активные агрегаты. Даже самые стойкие сорта нержавеющей стали мед- ленно разрушаются концентрированной азотной кислотой (в результате на дне бака образовывался густой зеленоватый «кисель», смесь солей металлов). Для уменьшения коррозионной активности в азотную кислоту стали добавлять различные вещества,всего 0,5% плавиковой (фтористоводородной) кислоты уменьшают скорость коррозии нержаве- ющей стали в десять раз. Для повышения уд.импульса в кислоту добавляют двуокись азота (NO 2). Это газ бурого цвета, с резким запахом. При охлаждении ниже 21 0 С он сжижается при этом образуется четырехокись азота (N 2 O 4), или азотный тетраксид (АТ). При атмосферном давлении АТ кипит при температуре +21 0 С, а при –11 0 С замер- зает. Газ состоит в основном из молекул NO 2 , жидкость из смеси NO 2 и N 2 O 4 , а в твердом веществе остаются одни только молекулы тетроксида. Кроме всего прочего добавка АТ в кислоту связывает попадающую в окислитель воду, что уменьшает корро- зионную активность кислоты, увеличивается плотность раствора, достигая максимума при 14% растворенного АТ. Эту концентрацию использовали американцы для своих бое- вых ракет. Наши для получения максимального уд. импульса использовали 27% раствор АТ. Такой окислитель получил обозначение АК-27. Параллельно поискам лучшего окислителя шли поиски оптимального горючего. Пер- вым широко использовавшимся горючим был спирт(этиловый), применявшийся на первых советских ракетах Р-1, Р-2, Р-5 ("наследство" ФАУ-2). Кроме низких энергетических показателей военных очевидно не устраивала низкая стойкость личного состава к «от- равлению» таким горючим. Военных больше всего устраивал продукт перегонки нефти,но проблема была в том, что такое топливо не самовоспламеняется при контакте с азот- ной кислотой. Этот недостаток обошли применением пускового горючего. Его состав был найден еще немецкими ракетчиками во время Второй мировой войны, и называлось оно «Тонка-250» (в СССР оно именовалось ТГ-02). Лучше всего воспламеняются с азот- ной кислотой вещества,имеющие в составе, кроме углерода и водорода еще азот. Таким веществом, обладающим высокими энргетическими характеристиками, был гидразин (N 2 H 4). По физическим свойствам он очень похож на воду (плотность на несколько процентов больше, температура замерзания +1,5 0 С, кипения +113 0 С, вязкость и все прочее – как у воды). Но военных не устраивала высокая температура замерзания (выше,чем у воды). В СССР был разработан способ получения несимметричного диметилгидразина (НДМГ), а американцы использовали более простой процесс получения монометилгидразин. Обе эти жидкости, были чрезвычайно ядовиты зато менее взрывоопасны, меньше впитывали водя- ные пары, были термически более стойкими чем гидразин. Но вот температура кипения и плотность по сравнению с гидразином понизились. Несмотря на некоторые недостатки новое топливо вполне устраивало и конструкторов, и военных. НДМГ имеет и другое, «несекретное» название - «гептил». «Аэрозин-50» использовавшийся американцами на своих жидкостных ракетах представляет собой смесь гидразина и НДМГ, что было след- ствием изобретения технологического процесса,в котором они получались одновременно. После того как баллистические ракеты стали размещаться в шахтах, в герметичном контейнере с системой термостатирования требования к диапазону рабочих температур ракетного топлива были снижены. В результате от азотной кислоты отказались,перейдя на чистый АТ так же получивший несекретное наименование – «амил». Давление наддува в баках повышало температуру кипения до приемлемой величины. Коррозия баков и тру- бопроводов с при использовании АТ уменьшилась настолько, что стало возможным хра- нить ракету заправленной на протяжении всего срока боевого дежурства. Первыми раке- тами использующими в качестве окислителя АТ стали УР-100 и тяжелая Р-36. Они могли стоять заправленными до 10 лет подряд. Основные характеристики двухкомпонентных жидких топлив при оптимальном соотношении компонентов (давление в камере сгорания, 100 кгс/см2, на срезе сопла 1 кгс/см2) Окислитель Горючее Теплотвор- Плотность Температура Уд.импульс ность топлива*, г /см 2 * в камере в пустоте, ккал/кг сгорания, К сек Азотная Керосин 1460 1,36 2980 313 к-та (98%) ТГ-02 1490 1,32 3000 310 Анилин(80%)+ фурфуриловый 1420 1.39 3050 313 спирт (20%) Кислород Спирт(94%) 2020 0,39 3300 255 (Жидкий) Водород ж. 0,32 3250 391 Керосин 2200 1,04 3755 335 НДМГ 2200 1,02 3670 344 Гидразин 1,07 3446 346 Аммиак ж. 0,84 3070 323 АТ Керосин 1550 1,27 3516 309 НДМГ 1,195 3469 318 Гидразин 1,23 3287 322 Фтор Водород ж. 0,62 4707 412 (жидкий) Гидразин 2230 1,31 4775 370 * отношение суммарной массы окислителя и горючего к их объёму. ТВЕРДОЕ ТОПЛИВО Твердое топливо подразделяется на баллиститное прессованные - нитроглицерино- вые пороха) представляющее собой гомогенную смесь компонентов (в современных мощных РД не применяется) и смесевое представляющее собой гетерогенные смеси окис- лителя, горючего-связующего (способствующего образованию монолитного топливного блока) и различных добавок (пластификатора, порошки металлов и их гидридов, отвер- дителя и т.д.). Твердотопливные заряды изготавливаются в виде канальных шашек, горящих по внешней либо внутренней поверхности. Основные специфические требования, предъявляемые к твёрдым топливам: равномерность распределения компонентов и, след- овательно, постоянство физико-химических и энергетических свойств в блоке, устой- чивость и закономерность горения в камере РД, а также комплекс физико-механических свойств, обеспечивающих работоспособность двигателя в условиях перегрузок, пере- менной температуры, вибраций. По уд.импульсу (около 200с.) твёрдое топливо усту- пает жидкому, т.к. из-за химической несовместимости не всегда удаётся использовать в составе твёрдого топлива энергетически эффективные компоненты. Недостатком твер- дого топлива является подверженость "старению" (необратимому изменению свойств вследствие происходящих в полимерах химических и физических процессов). Американские ракетчики быстро отказались от жидкого топлива и для боевых ракет предпочли твердое смесевое,работы по созданию которого в США проводились еще с середины 40-х годов, что позволило уже в 1962г. принять на вооружение первую твердотопливную МБР «Минитмен-1». В нашей стране широкомасштабные исследования начались со значительным опозданием. Постановлением от 20 ноября 1959г. предусмат- ривалось создание трёхступенчатой ракеты РТ-1 с твердотопливными ракетными двига- телями (РДТТ) и дальностью 2500км. Поскольку к тому моменту практически отсутство- вали научная, технологическая и производственная базы по смесевым зарядам альтерна- тивы использованию баллиститных твердых топлив не было. Максимально допустимый по технологии диаметр пороховых шашек изготавливаемых методом проходного прессования не превышал 800мм. Поэтому двигатели каждой ступени имели пакетную компоновку из 4 и 2 блоков у первой и второй ступеней соответственно. Вкладной пороховой заряд горел по внутреннему цилиндрическому каналу, торцам и поверхности 4-х продольных щелей, расположенных в передней части заряда. Такая форма поверхности горения обес- печивала необходимую диаграмму давления в двигателе. Ракета имела неудовлетвори- тельные характеристики так, при стартовой массе 29.5т. "Минитмен-1" имел предель- ную дальность 9300км, а у РТ-1 эти характеристики составляли, соответственно 34т. и 2400км. Основной причиной отставания ракеты РТ-1 являлось использование баллист- ного пороха. Для создания МБР на твердом топливе, по своим характеристикам прибли- жающейся к "Минитмен-1", было необходимо использование смесевых топлив, обеспечи- вающих более высокие энергетические и лучшие массовые характеристики двигателей и ракеты в целом. В апреле 1961г. вышло Постановление Правительства о разработке МБР на твердом топливе - РТ-2, было проведено установочное совещание и подготовлена программа "Нейлон-С" по разработке смесевых топлив с уд.импульсом 235с. Эти топ- лива должны были обеспечить возможность изготовления зарядов массой до 40т. мето- дом литья в корпус двигателя. В конце 1968г. ракета была принята на вооружение, но требовала дальнейшего совершенствования. Так, смесевое топливо формовалось в отдельных прессформах, затем заряд вкладывался в корпус, а зазор между зарядом и корпусом заливался связующим веществом. Это создавало определенные трудности при изготовлении двигателя. Ракета РТ-2П, имела твёрдое топливо ПАЛ-17/7 на основе бутил-каучука, обладающего высокой пластичностью, не имеющего заметного старения и растрескивания в процессе хранения, при этом топливо заливалось прямо в корпус дви- гателя, затем производилась его полимеризация и формование необходимых поверхнос- тей горения заряда. По своим летно-техническим характеристикам РТ-2П приближалась к ракете "Минитмен-3". Первыми нашли широкое применение в РДТТ смесевые топлива на основе перхлората калия и полисульфида. Значительное увеличение уд. импульса РДТТ произошло после того, как вместо перхлората калия стал применяться перхлорат аммония, а вместо полисульфидных - полиурстаноеые, а затем полибутадиеновые и другие каучуки, и в состав топлива было введено дополнительное горючее - порошкообразный алюминий. Почти все современные РДТТ содержат заряды, изготовленные из перхлората аммония, алюминия и полимеров бутадиена (СН 2 =СН-СН=СН 2). Готовый заряд имеет вид твердой резины или пластика. Его подвергают тщательному контролю на сплошность и однород- ность массы, прочное сцепление топлива с корпусом и т.д. Трещины и поры в заряде, как и отслоения от корпуса, недопустимы так как могут привести к нерасчетному уве- личению тяги РДТТ (вследствие увеличения горящей поверхности), прогарам корпуса и даже взрывам. Характерный состав смесевого топлива, используемого в современных мощных РДТТ: окислителя (как правило перхлорат аммония NH 4 C1O 4) 60-70%, горючего- связующего (бутилкаучук, нитрильные каучуки, полибутадиены) 10-15%, пластификатора 5-10%, металла (порошки Al,Be,Mg и их гидриды) 10-20%, отвердителя 0,5-2,0% и ката- лизатора горения 0,1-1,0%.(окись железа) В современных космических РДТТ сравнительно редко применяется и модифицирован- ное двухосновное, или смесевое двухосновное топливо. По составу оно является проме- жуточным между обычным баллистным двухосновным (двухосновные пороха – бездымные пороха в которых два основных компонента: нитроцеллюлоза - чаще всего в виде пирок- силина, и нелетучий растворитель – чаще всего нитроглицерин) топливом и смесевым. Двухосновное смесевое топливо содержит обычно кристаллический перхлорат аммония (окислитель) и порошкообразный алюминий (горючее), связанные при помощи нитроцел- люлозно-нитроглицерииовой смеси. Вот типичный состав модифицированного двухоснов- ного топлива: перхлорат аммония -20,4%, алюминий - 21,1%, нитроцеллюлоза - 21,9%, нитроглицерин - 29,0%, триацетин (растворитель) - 5,1%, стабилизаторы - 2,5%. При той же плотности, что и смесевое полибутадиеновоё топливо, модифицированное двух- основное характеризуется несколько большим удельным импульсом. Недостатками же его являются более высокая температура горения, большая стоимость, повышенная взры- воопасность (склонность к детонации). С целью увеличения удельного импульса как в смесевые, так и в модифицированные двухосновные топлива могут вводиться сильно взрывчатые кристаллические окислители например гексоген. ГИБРИДНОЕ ТОПЛИВО В гибридном топливе компоненты находятся в различных агрегатных состояниях. Горючим могут служить: отвержденные нефтепродукты, N 2 H 4 , полимеры и их смеси с порошками - Al, Be, BeH 2 , LiH 2 , окислителями - HNO 3 , N 2 O 4 , H 2 O 2 ,FC1O 3 , C1F 3 , О 2 ,F 2 , OF 2 . По удельному импульсу эти топлива занимают промежуточное положение между жид- кими и твёрдыми. Максимальный уд.импульс имеют топлива: BeH 2 -F 2 (395с), ВеН 2 -Н 2 О 2 (375с), ВеН 2 -О 2 (371с). В основе гибридного топлива, разработанного Стэнфордским университом и NASA, лежит парафин. Он нетоксичен и является экологи- чески чистым (при сгорании образует только углекислый газ и воду) его тяга регули- руется в широких пределах, возможен и повторный запуск. Двигатель имеет довольно простое устройство, сквозь парафиновую трубу, расположенную в камере сгорания, прокачивается окислитель (газообразный кислород), при зажигании и дальнейшем разо- греве поверхностный слой топлива испаряется, поддерживая горение. Разработчикам удалось добиться высокой скорости горения и таким образом решить основную проблему, тормозившую ранее использование подобных двигателей в космических ракетах. Хорошие перспективы может иметь применение металлического горючего. Одним из наиболее под- ходящих для этой цели металлов является литий. При сгорании 1 кг. этого металла выделяется в 4,5 раза больше энергии чем при окислении керосин жидким кислородом. Большей теплотворностью может похвастать лишь бериллий. В США опубликованы патенты на твердое ракетное топливо, содержащее 51-68% металлического лития.

Одной из наиболее молодых, быстроразвивающихся и мощных составляющих энергетических конденсированных систем (ЭКС) является смесевое ракетное твердое топливо (СРТТ).

СРТТ - многокомпонентная гетерогенная грубодисперсная высоконаполненная взрывчатая система, состоящая из окислителя, связующего-горючего и специальных добавок (энергетических, технологических и эксплуатационных) и получаемая путем механического смеше-ния компонентов с последующим превращением в моноблок, способный к закономерному горению.

Таблица 3 − Рецептуры и свойства составов цветных огней на баллиститной основе

Наименование компонента и свойств состава Содержание компонентов, %, и значения характеристик для состава огня
красного №1 зеленого желтого № 1 белого лилового голубого желтого № 2 желтого искристого красного № 2
Баллиститная основа 97,5
Металлическое горючее - - -
Цветопламенная добавка 2,5
Усилитель цвета пламени - - - - - -
Искрообразователь - - - - - - -
I, кд
U, мм/с 1,5 1,5 1,4 1,6 1,8 1,5 0,8 1,2 0,8
Р, % - - -

Родоначальником СРТТ был дымный порох (ДП). Китайцы первыми начали применять его в качестве твердого топлива для ракет. Ракета в качестве стабилизатора имела шест длиной 2,5 м. В качестве оболочки-корпуса применили бамбуковые трубки. Индусы в качестве корпуса-оболочки уже использовали железный корпус. В 1799 г. индусы в боевых действиях применяли ракеты против англичан при обороне г. Серингапатама. Для массированного использования ракет там был создан корпус ракетных стрелков численностью до 5000 человек. Масса ракет составляла от 3 до 6 кт .

В Европе первые ракеты также появились с изобретением пороха. Англичане освоили технологию изготовления ракет на дымном порохе в 1804 г. Дальность полета ракет составляла 2,5 км. Ракеты имели железный корпус, а с целью увеличения площади горения заряд имел канал. На вооружение они были приняты в 1806 г. (использовались при осаде г. Булони и в 1807 г. при обстреле г. Копенгагена). Масса ракеты составляла от 3 до 17 кг. Вслед за Англией ракеты на вооружение принимают в Австрии, Франции, Пруссии.

Русская ракетная техника шла своим самостоятельным путем, и есть сведения, что Россия намного опередила Западную Европу. Уже в начале XVII в. были хорошо известны способы изготовления боевых ракет. В 1680 г. в Москве основано первое «ракетное заведение», состоящее из нескольких лабораторий, занимающихся приготовлением специальных ракетных порохов и отдельных частей ракет .

В 1807 г. была разработана сорокачетырехмиллиметровая сигнальная ракета на ДП, которая находилась на вооружении более 100 лет. Широкое применение пороховые ракеты, разработанные русскими учеными А.Д. Засядько и К.И. Константиновым, нашли во время русско-турецкой войны в 1828-1829 гг., в боевых операциях на Кавказе в 1850 г. и при обороне Севастополя от иностранных захватчиков в 1854–1855 гг. .

Ракеты на ДП утратили свое значение по двум причинам:

Вследствие неудовлетворительного значения энергетических характеристик пороха;

Вследствие малой точности ракет.

Появление нарезной артиллерии, позволившей значительно повысить точность попадания, окончательно свело на нет интерес к ДП.

В период второй мировой войны в связи с тем, что баллиститные пороха были дефицитными, а некоторые их свойства не позволяли использовать эти пороха в качестве источника энергии ракет, усилия научных работников многих стран были направлены на разработку механически прочных СРТТ.

В 1942 г. в Артиллерийской академии им. Ф.Э. Дзержинского были разработаны литьевые составы СРТТ на основе аммонийной селитры и органических горюче-связующих веществ типа поливинилацетата, а в 1946 г. А.А. Шмидт впервые обосновал возможность получения твердых топлив на базе полимеризующихся веществ. Он предсказал реальные пути данного направления и его перспективность. К наиболее ранним работам в этом направлении относятся исследования
Г.В. Калабухова . В 1948 г. им были предложены СРТТ на основе перхлоратов аммония и калия и горючей высокополимерной связки, состоящей из коллоксилина, полистирола и каучука. Однако по энергетическим характеристикам и прочности разработанные составы уступали баллиститным порохам. Заряды изготавливались глухим и проходным прессованием.

Первые американские СРТТ были получены в лаборатории Калифорнийского технологического института.

В их состав входили:

перхлорат калия или нитрат аммония – 75 %;

битум − 18 %;

нефтяное масло − 7 %.

В дальнейшем с целью повышения энергетики в качестве окислителя стали использовать перхлорат аммония (ПХА) и металлический алюминий, а для улучшения физико-механических характеристик топлива были применены каучукоподобные горюче-связующие вещества. Так, на основе тиокола (полисульфидный каучук) и ПХА были разработаны СРТТ для оперативно-тактической ракеты «Серджент» массой около 4 тонн и дальностью полета до 150 км. Затем на основе полиуретана и ПХА было создано топливо для оперативной ракеты «Першинг» с дальностью полета до 700 км, а также стратегической ракеты «Полярис» массой около 13 тонн и дальностью полета до 4000 км. В дальнейшем на основе ПХА и сополимера полибутадиена с акриловой кислотой было разработано топливо, использованное для изготовления зарядов к межконтинентальной ракете «Минитмен» с дальностью полета до 10000 км.

Все эти ракеты были разработаны и приняты на вооружение в период с 1953-1963 гг. В конце 1970 г. армия, Военно-Морской Флот и авиация США имели 600 ракет «Полярис» на подводных лодках и 1000 ракет «Минитмен», установленных в шахтах на боевых позициях.

В СССР разработкой и использованием СРТТ в широком плане стали заниматься с 1958 г. В 1959 г. в Артиллерийской академии
им. Ф.Э. Дзержинского было получено и исследовано в лабораторном масштабе полиуретановое топливо. В этом же году разработано в промышленном масштабе СРТТ на основе тиокола и ПХА. Несколько позже созданы СРТТ на основе простых и сложных полиэфиров, акрилонитрильных каучуков, бутилкаучука и карбоксильных каучуков .

Начиная с 1961 г. усилия исследователей были направлены на повышение удельного импульса СРТТ, увеличение уровня физико-меха-нических характеристик и стабилизацию процесса горения.

С.П. Королев создал первую твердотопливную ракету РТ-1 на баллиститном порохе с дальностью полета 2500 км при стартовой массе 34 тонны, используя вкладные заряды диаметром 800 мм. Только перейдя на СРТТ, он смог создать вторую твердотопливную ракету
РТ-2 (8К-98), имеющую дальность полета уже 9500 км при стартовой массе 51 тонна . Первый пуск ее состоялся 4 ноября 1966 г., а на вооружение она была принята в 1968 г.

Заряд твердого ракетного топлива − источник химической энергии и один из основных конструктивных элементов твердотопливной энергетической установки (ракетный двигатель, газогенератор, аккумулятор давления, бортовой источник мощности) определенной формы и размера, размещенный в камере сгорания. Твердотопливные заряды подразделяются на вкладные и скрепленные с корпусом. Вкладные заряды после изготовления помещаются в корпус двигателя и закрепляются различными способами в зависимости от особенностей конструкции (рисунок 43). Вкладной заряд может быть выполнен в форме моноблока или состоять из нескольких шашек. Поверхность вкладного заряда, не предназначенная для горения, может быть флегматизирована путем нанесения бронирующего покрытия. Форма канала многошашечного заряда, как правило, цилиндрическая. Моноблочный заряд может быть бесканальным или иметь центральный канал в форме цилиндра, многолучевой «звезды» и др. .

Прочно скрепленный с корпусом заряд изготавливается заливкой топливной массы непосредственно в камеру сгорания. Скрепление заряда с корпусом осуществляется с помощью специальных защитно-крепящих (клеевых) слоев (рисунок 44) .

ТРТ − твердое ракетное топливо; ТЗП − теплозащитное покрытие;

ЗКС − защитно-крепящий слой; СОК − сопловой блок

Рисунок 44 − Схема крепления с помощью защитно-крепящих слоев

Размеры и конструктивная форма заряда выбираются из условия обеспечения требуемого значения секундного расхода топлива, временных и тяговых характеристик, нагрузок, температурных режимов эксплуатации и применения. Требуемая зависимость текущего значения поверхности горения от величины сгоревшего свода обеспечивается формой канала (цилиндрический, звездообразный, щелевой, цилиндро-конический и др.), а также введением специальных компенсаторов горения в виде проточек частичного или полного открытия торцов и др.

Совершенство заряда в значительной степени определяется коэффициентом объемного заполнения камеры сгорания, минимизацией отношения текущего значения поверхности горения к среднеинтегральной величине, технологичностью изготовления, стойкостью к воздействию внешних факторов. Маcсовые параметры зарядов изменяются в широких пределах: от долей грамма до нескольких сотен тонн.

Применение СРТТ не ограничивается вооруженными силами. Они параллельно широко стали применяться для освоения космоса и в народном хозяйстве .

Использование СРТТ в мирных целях. Ракетные двигатели на твердом топливе (РДТТ) находят широкое применение в мирных целях в народном хозяйстве как вспомогательные двигатели для решения самых разнообразных задач в ракетно-космической технике .

РДТТ наиболее часто применяются в системе аварийного спасения космонавтов и летчиков, для торможения и ускорения космического аппарата, отделения ступеней ракеты-носителя, сброса полезного груза, стабилизации и коррекции траектории космического аппарата (КА), коррекции орбиты КА, посадки КА на планеты, старта ракет-носителей и возвращаемых КА в системах «Шаттл», в качестве двигателей метеорологических ракет, служащих для подъема аппаратуры в верхние слои атмосферы, противоградовых и противолавинных.

Преимуществами РДТТ, обеспечивающими их широкое применение в ракетно-космических аппаратах, являются высокая воспроизводимость параметров, в том числе точность выполнения требований по полному импульсу тяги, высокий коэффициент массового совершенства, длительные гарантийные сроки применения и относительная безопасность при хранении и эксплуатации.

Для отделения ступеней ракеты применяются малогабаритные РДТТ самых разнообразных конструкций, тип которых определяется выполняемой задачей. Заряд из СРТТ, вариант снаряжения вкладной или жесткоскрепленный, представлен на рисунке 45.

1 − воспламенитель; 2 − обечайка камеры; 3 − заряд СРТТ;

4 − сопловой блок

Рисунок 45 − Малогабаритный РДТТ

Тормозные двигатели применяются для торможения при спуске самых разнообразных космических аппаратов. Для этих целей в основном применяются РДТТ сферического типа, например, сферические РДТТ серии ТЕ-М (США) фирмы «Тиокол Паудер» использовались для торможения при спуске космического корабля «Джемени», при посадке космического аппарата «Сервейер» на луну и др. Конструкция тормозного двигателя типа ТК-М-385 представлена на рисунке 46.

1 − защитный кожух; 2 − блок центровочного зеркала; 3− заряд
твердого топлива; 4 − теплоизоляционное покрытие; 5 − корпус;
6 − вкладыш; 7 − расширяющаяся часть сопла; 8 − резиновая заглушка;

9 − воспламенительное устройство

Рисунок 46 – Тормозной РДТТ типа ТК-М-385

Заряд твердого топлива выполнен в виде восьмилучевой звезды из полисульфидного топлива, состоящего из ПХА и связки с добавлением 2 % алюминия.

Коррекция орбиты космического аппарата необходима для обеспечения его межорбитальных переходов и выполнения различных маневров на орбите. К двигателям такого типа относятся апогейные и пирогейные РДТТ, обеспечивающие переход КА с одной орбиты на другую.

Апогейный ракетный твердотопливный двигатель типа FW-5, применяемый в США, представлен на рисунке 47 .


Рисунок 47 − РДТТ типа FW-5

Корпус изготовлен из титанового сплава. В двигателе используется СРТТ на основе полиуретанового связующего, ПХА и алюминия.
В качестве теплозащитного материала в корпусе используется состав на основе фенольной смолы.

На рисунке 48 изображен РДТТ аналогичного назначения MAGE-1. Его корпус изготовлен из композиционного материала «Кевлар-49», заряд − из алюминизированного топлива.

1 − теплоизоляция; 2 − заряд твердого топлива; 3 − сопловой блок;
4 − корпус; 5 − воспламенительное устройство

Рисунок 48 − РДТТ типа MAGE-1

На рисунке 49 изображен перспективный апогейный РДТТ (США) серии STAR-48 фирмы «Тиокол Кемик», позволяющий увеличивать удельный импульс тяги в пустоте на 59,0–88,5 кн· с/кг при коэффициенте объемного заполнения до 0,935.

1 − корпус; 2 − теплозащитное покрытие; 3 − тороидальный
воспламенитель; 4 − сопловой блок; 5 − графитовый вкладыш

Рисунок 49 − Апогейный РДТТ серии STAR-48

Эти двигатели обладают следующими преимуществами:

Заряд из СРТТ на основе полибутадиенового каучука имеет цилиндрическую форму с радиальными щелевыми пропилами и заполняет всю переднюю часть корпуса;

Корпус выполнен из титанового сплава с теплозащитой из композиционного материала углерод-углерод.

Особое значение при конструировании малогабаритных РДТТ уделяется выбору топлива. Наиболее полно предъявляемым требованиям удовлетворяют СРТТ, в которых в качестве связующего-горю-чего применяются полиуретаны или углеводородные каучуки, а в качестве высокотеплопроводных добавок − алюминий. Термодинамические характеристики СРТТ могут быть повышены применением как более мощных окислителей, так и гидридов металлов, например, алюминия .

Некоторые характеристики СРТТ, применяемые в малогабаритных двигателях РДТТ в США, приведены в таблице 4.

Серьезным недостатком СРТТ на основе ПХА является их токсичность , т.к. при его сгорании выделяется большое количество токсичного хлора и хлористого водорода. Например, при старте корабля «Спейс Шаттл» при работе твердотопливных ускорителей в атмосферу выбрасывается около 2 тонн хлора и 210 тонн хлористого водорода, которые оказывают вредное воздействие на окружающую среду. Поэтому, чтобы облегчить использование СРТТ в мирных целях, ведутся большие работы как у нас, так и за рубежом по замене ПХА на экологически чистые окислители: аммонийная соль динитроазовой кислоты (АДНА), аммиачная селитра .

Таблица 4 − Основные характеристики топлив для РДТТ

В США разработано дешевое и экологически чистое СРТТ для двигателей крупных космических ускорителей, в котором в качестве основных компонентов используются нитрат аммония, гексоген, октоген и связующее на основе полиглицедилазида, пластифицированного нитроэфирами .

В ФГУП «Союз» создано экологически чистое СРТТ «Центр», неблагоприятные свойства которого, в частности, фазовая нестабильность аммиачной селитры, устранены за счет ввода в кристаллы модифицирующей добавки. В нем используется активное связующее с температурой кристаллизации минус 50 °С на основе эвтектической смеси с нитроэфирами. Использование аммиачной селитры и бутадиен-нит-рильного каучука снижает стоимость топлива.

Однако применение аммиачной селитры вместо ПХА заметно снижает энергетику СРТТ, ограничивает его использование в изделиях, где значение единичного импульса играет решающую роль. Кроме того, применение нитрата аммония ограничивается его повышенной гигроскопичностью.

Разработанные экологически чистые топлива находят применение в качестве зарядов для метеорологических ракет, в газодинамических буровых аппаратах, пороховых аккумуляторах давления.

В настоящее время все большее число ракет-носителей, применяемых для запуска различного типа спутников, используют в качестве ускорителей РДТТ. Так, например, в ракете «Титан-3С» (США) для старта кроме основных жидкостных ракетных двигателей (ЖРД) используются в качестве ускорителей два мощных РДТТ диаметром 3 м и длиной 25,8 м, развивающих тягу в пустоте до 540·10 4 н при времени работы 110 с. Применение их позволило увеличить массу нагрузки, выводимой на орбиту, до 11,4 тонн. Стартовая масса ракеты составляет 700 тонн.

Мощные ускорители, работающие на СРТТ с массой заряда от 100 до 200 тонн, стали применяться для запуска французских ракет «Ариан-2» и «Ариан-4», служащих для выведения на орбиту искусственных спутников Земли.

Фирмами IIS (США) и SEP (Франция) разработан усовершенствованный вариант такого типа двигателя, обеспечивающего при среднем давлении в камере 33,9·10 5 Па удельный импульс тяги 2970 кн· с/кг.

Заряд прочно скреплен с корпусом двигателя и имеет канал, не доходящий до переднего днища корпуса. Такая конструкция позволяет повысить коэффициент объемного заполнения до 0,92 и обеспечить достаточно небольшую площадь поверхности горения. Заряд изготавливается из высокоимпульсного твердого топлива на основе ПХА и полибутадиенового каучука (10 %), алюминия (20 %) и октогена (12 %).

Эффективным направлением конверсии многих заводов по производству СРТТ является изготовление на их основе стартовых ускорителей для мощных ракет-носителей и космических кораблей, выводящих на орбиту различные КА. Ускорители имеют очень большую массу (от 150 до 400 тонн), их изготовление обеспечивает загрузку заводов по производству СРТТ в мирное время. Обычно два таких ускорителя закрепляются по бокам основного корпуса ракеты и обеспечивают ее подъем, а после выработки топлива отделяются от ракеты с помощью специальных РДТТ сброса и падают на землю.

Типовой стартовый РДТТ имеет пять-шесть взаимозаменяемых секций, собираемых одна над другой и образующих общий корпус двигателя .

Схема стартового двигателя к ракете-носителю «Титан-3С», с помощью которого выводятся на орбиту различные спутники США, приведена на рисунке 50.

Она состоит из пяти секций диаметром 3,0 м и длиной 3,0 м. Масса каждой секции составляет 33,0 тонны. Заряд прочно скреплен с корпусом каждой секции и изготовляется из СРТТ, содержащего ПХА, алюминий и связующее на основе полибутадиена, метакриловой кислоты и акрилонитрила. Такое СРТТ при давлении в камере 6,0-6,2 МПа обеспечивает удельный импульс тяги 2480. Корпус двигателя сварной (из мостовой стали). На внутреннюю поверхность наносится теплозащитное покрытие из синтетического каучука с кремниевым наполнителем.

РДТТ к системе «Шаттл». Космическая система «Шаттл» (массой более 2000 тонн), предназначенная для вывода на орбиту пилотируемых и спускаемых кораблей «Челенджер», «Атлантик», «Дискавери», «Колумбия» и других, представляет собой связку, в которую вхо-дит орбитальный корабль с экипажем, два твердотопливных ускорителя для разгона корабля на начальном участке траектории и топливный бак одноразового использования. Последний является основным элементом системы, к которому крепятся спускаемый корабль и ускорители, возвращаемые на Землю и используемые повторно.

Основной особенностью этой системы в отличие от отечественной системы «Энергия-Буран» является то, что на ней установлены два ускорителя, работающие на твердом топливе. В системе «Энергия-Буран» стартовые ускорители работают на жидком топливе.

Твердотопливный ускоритель представляет собой РДТТ секционного типа, имеет диаметр 3,7 м, длину 45,5 м и массу в снаряженном состоянии около 590 тонн, а после выгорания топлива − 78 тонн. Масса твердого топлива составляет примерно 500 тонн. Время его работы больше 2 мин, суммарная тяга свыше 26 Мн.

В качестве твердого топлива применяют СРТТ, в состав которого входят ПХА, порошкообразный алюминий, полибутадиеновое связу-ющее, оксид железа и другие добавки. Форма заряда, жестко скрепленного с корпусом, − цилиндрическая, с внутренним каналом обеспечивает соблюдение необходимого закона нарастания тяги, который создает наиболее выгодный режим перегрузок (не более 3) для космонав-тов. После выгорания топлива корпуса ускорителей отделяются от корабля на высоте 70-90 км, а затем при достижении плотных слоев атмосферы срабатывает парашютная система, обеспечивающая их приводнение. Поднятые из воды корпуса ускорителей восстанавливаются и вновь заполняются топливом.

Твердотопливные ускорители используют и во Франции на мощной ракете-носителе для запуска космических объектов, в том числе пилотируемых кораблей многоразового использования «Гермес», «Ариан-5».

Применение твердотопливных ускорителей, имеющих достаточно значительную массу топлива, как в системе «Шаттл», так и в ракетных носителях типа «Титан-3С» создало хорошие предпосылки для конверсии заводов, производящих твердое ракетное топливо в США, обеспечивая их загрузку в мирное время без изменения технологического процесса и оборудования.

Двигатели системы аварийного спасения космонавтов. Все ракеты-носители, служащие для вывода на орбиту космических объектов с космонавтами на борту, снабжаются системами аварийного спасения людей в момент запуска и активного полета.

Основой этой системы является РДТТ специальной конструкции, использующей твердые ракетные топлива баллиститного и смесевого типа. Например, в трехступенчатой ракете-носителе «Союз» третья ступень представляет собой блок длиной 8 м и диаметром 2,6 м, к которой через переходник пристыкован космический корабль, закрытый сверху обтекателем диаметром 3,0 м. На вершине обтекателя находится двигательная установка аварийного спасения корабля, имеющая форму большого гриба (рисунок 51) .


1 − двигательная установка; 2 − ракета «Союз»

Рисунок 51 − Двигательная установка аварийного спасения
на корабле «Союз»

Назначение установки в случае отказа ракеты, еще не израсходовавшей огромной массы топлива, − мгновенно увести космонавтов от очага неизбежного пожара и взрыва на расстояние, с которого возможен спуск на парашюте в безопасное место.

Система аварийного спасения (САС) корабля «Союз» комплектуется следующим образом: в носовой части ракеты монтируется аварийная двигательная установка, состоящая из твердотопливных ракетных двигателей трех типов.

Непосредственно на головном обтекателе устанавливается основной двигатель, включающийся в случае аварии и быстро отводящий верхнюю часть головного обтекателя с отсеком и спасаемым аппаратом корабля от ракеты.

Двенадцать сопел этого мощного двигателя расположены по кругу в его верхней части и развернуты под углом 30 градусов от продольной оси. Над ними находится небольшой обтекатель в виде полусферы, под которым спрятаны четыре двигателя управления. Они включаются вслед за основным, обеспечивая разворот и увод спасаемой части в сторону от опасной зоны. Еще выше находится двигатель разделения, который, включаясь последним, обеспечивает отделение головного обтекателя и его увод от спускаемого аппарата. После этого вводится основной парашют, и спускаемый аппарат совершает спуск и мягкую посадку так же, как при возвращении из штатного полета. Торможение при посадке осуществляется тормозными РДТТ, работающими на твер-дом топливе .

Термостойкие топлива для газогенераторов СРТТ. Для интенсификации добычи нефти стал широко применяться метод торпедирования скважин специальными зарядами. Пороховые газы создают каналы и трещины в горной породе, способствуя притоку нефти. Но используемые для этих целей пороха баллиститного типа имеют определенные ограничения: например, могут использоваться только в тех скважинах, где температура не превышает 110 °С (т.е. до глубины
3 км). Разработанные составы на основе ПХА и неактивных углеводородных связующих устраняют этот недостаток. Они сохраняют работоспособность после их выдержки при температуре 150 °С в течение 6 часов и могут 10 лет храниться при температуре 50 °С. Критическая температура при диаметре шашки 150–200 мм составляет 170–200 °С. Выделяющаяся при горении этого топлива соляная кислота, попадая в пласт и реагируя с породой, может способствовать интенсивному развитию трещин. Изготовление зарядов из этих топлив может производиться на существующем оборудовании по технологии заводов по производству СРТТ .

СРТТ − источник аэрозолей. Одним из перспективных методовтушения пожаров в помещениях для хранения спирта, керосина, ацетона, продуктов в магазинах, винных погребах, в отсеках кораблей является аэрозольный, т.е. мгновенное заполнение помещения аэрозольной средой, почти не содержащей кислорода, в результате чего и прекращается горение.

Этот метод, запатентованный Кюном еще в конце XIX столетия, в дальнейшем был значительно усовершенствован и получил широкое распространение. «Банки Кюна» заполнялись пиротехническим составом, который имел ряд значительных недостатков: например, слеживаемость, недостаточный уровень физико-механических характеристик и др. Взамен его были разработаны новые типы порохов − источников аэрозолей, специально предназначенных для системы пожаротушения и предотвращения взрыва газовоздушных смесей. Этот новый класс порохов получил название ПАС (пороховые, аэрозольные, смесевые). Особенностью этих составов является высокая экономическая эффективность; расход огнетушащего состава 20-90 г/м 3 вместо 200-700 г/см 3 , применяемых ранее, экологическая чистота, высокая надежность и постоянная готовность к применению, наличие совершенной технологии по методу свободного литья (вязкость массы находится в пределах
(2-8)·10 4 , живучесть более 24 ч).

Разработано несколько составов (например, ПАС-8, ПАС-11), в которые входят в качестве основного компонента нитраты К, Na и углекислые К и Na, NaCl, KCl, K 2 Cr 2 O 7 , перхлораты К, Na, NH 4 , а в качестве связующего − нитроцеллюлоза, каучуки, полиэфирные, эпоксидные или резольные смолы. Температура горения их колеблется в пределах 910–1495 К, массовая доля твердой фазы 13–39 % .

Твердое топливо как источник газа помимо РДТТ может применяться и в других областях техники: для вращения турбины, приведения в действие пневмосистем, заполнения эластичных оболочек и т.д. Но их широкому применению препятствует высокая температура сгорания. Наиболее низкокалорийные твердые топлива дают газ с температурой 1400–1500 К, тогда как традиционные для техники материалы (металл, пластик, резина) выдерживают температуру 300–400 К. Следовательно, нужно снижать температуру продуктов горения топлива. По мнению В.А. Шандакова и В.Ф. Комарова , температуру газов можно снизить, если создать заряд в виде материала со сквозной пористостью. Зона горения находится со стороны глухого торца камеры сгорания (рисунок 52) .

1 − глухой торец камеры сгорания; 2 − заряд ТТ; 3 − фильтр; 4 − сопло

Рисунок 52 − Схема сжигания пористого заряда ТТ в камере сгорания

Развивающееся в ней давление через поры в заряде выталкивает газ и продвигает жидкие продукты сгорания через тело пористой топливной шашки, подогревая ее до температуры газификации, т.е. подогретым телом служат продукты сгорания ТТ. При полном теплообмене газ перед фронтом тепловой волны будет иметь температуру, равную начальной температуре заряда. На практике она составляет 300–330 К.

Достоинства таких твердых топлив еще и в том, что в качестве газообразных продуктов сгорания можно получить индивидуальные газы, например, N 2 , O 2 , H 2 с чистотой 98,0–99,0 %. Область применения таких устройств весьма широка: средства спасения человека на земле и воде, аварийные пневмосистемы, средства пламеподавления и пожаротушения, грузоподъемные устройства и устройства вытеснения и далее медицинская помощь.

В технике можно использовать и высокую температуру, например, в нефтегазодобывающей промышленности.

Нефтяная скважина со временем угасает из-за закупорки пор нефтяного пласта выносимыми нефтью твердыми частицами, углеродами парафинового ряда и смолистыми веществами. Существовал метод воздействия на нефтеносный пласт давлением воды, но это дорого. Если же в заполненной жидкостью скважине в зоне нефтяного пласта создать при сжижении ТТ кратковременно давление выше давления горных пород, то удается не только прочистить закупоренные поры давлением и температурой задавливаемых в пласт газов, но и создать новые поры. Надо лишь очень быстро сжечь ТТ, воспользовавшись инерционностью столба жидкости над ним.

Для увеличения дебита скважины применяют гидрореагирующие составы при термохимической обработке.

Твердые топлива можно использовать в качестве химического реактора для синтеза различных веществ. Например, если в качестве окислителя взять смесь нитрата алюминия Al(NO 3) 3 с нитратами кобальта, хрома, железа, получим смешанный оксид Al x O y синего, зеленого и красного цвета − светостойкий пигмент для красок.

Если взять смешанные нитраты циркония и иттрия, получим основу жаростойкой керамики − стабилизированный диоксид циркония. Используя смешанные нитраты бария, меди и иттрия, получают сверхпроводящую керамику .

Гидрореагирующие составы применяют для наддува понтонов при подъеме затонувших объектов. Основными характеристиками гидрореагирующих составов являются количество тепла, выделяющегося при сгорании зарядов при взаимодействии с водой, количество воды, необходимое для сгорания одного состава и газопроизводительность.

Пороховые аккумуляторы давления. Пороховые аккумуляторы давления (ПАД)твердотопливные энергетические устройства, служащие для преобразования химической энергии твердого топлива в энергию сжатого газа.

Типовая конструкция ПАД включает корпус, состоящий из высокопрочной оболочки, днища, соплового выпускного устройства и опор-ных элементов для заряда, сам твердотопливный заряд, воспламенитель и средства инициирования запуска.

ПАД по сравнению с системами сжатия холодного газа имеет ряд существенных преимуществ:

Компактность;

Быстродействие;

Меньшие массово-габаритные характеристики;

Хорошие эксплуатационные свойства при различных атмос-ферных воздействиях;

Высокая надежность работы.

Они нашли широкое применение в различных пневмо-вытесни-тельных системах гражданского и специального назначения. Например, выброс ракетных сигналов из пусковых шахт, наддув различных емкостей, быстрое открытие и закрытие крышек, люков, затворов, наддув нефтяных скважин, экстренное торможение .

Ракетное топливо - компонент веществ питания ракетного двигателя для создания им тяги и движения ракеты в заданном направлении. С развитием ракетной техники идет развитие новых видов ракетных двигателей, например ядерный ракетный двигатель, или ионный и т. д. Ракетное топливо может быть химическим (жидким и твёрдым), ядерным, термоядерным.

Жидкое ракетное топливо делится на окислитель и горючее. Эти компоненты находятся в ракете в жидком состоянии в разных баках. Смешивание происходит в камере сгорания, обычно с помощью форсунок. Давление создается за счет работы турбонасосной или вытеснительной системы. Также компоненты топлива используются для охлаждения сопла ракетного двигателя.

Также применяются так называемые ракетные монотоплива, в которых и окислителем и восстановителем является одно и то же вещество. При работе ракетного двигателя на монотопливе происходит химическая реакция самоокисления-самовосстановления, либо двигатель работает только за счёт фазового перехода вещества монотоплива, например из жидкого состояния в газообразное.

Твёрдое ракетное топливо тоже состоит из окислителя и горючего, но они находятся в смеси твёрдых веществ.

Группы

Ракетное топливо в достаточно условной мере может быть разделено на различные группы; в качестве основных групп обычно рассматриваются следующие:

  • Электрореактивные: электроэнергия и рабочие тела.
  • Ядерные: ядерное деление, синтез, распад изотопов.
  • Химические: химические реакции, реакции рекомбинации свободных радикалов.
  • Физические: потенциальная энергия сжатых газов.

Типы

Химические ракетные топлива
  • Твёрдые .
    • Нитроглицерин , динитрогликоль и другие труднолетучие растворители
    • Карбиды , нитриды , азиды и амиды металлов
  • Жидкие :
    • Несимметричный диметилгидразин (НДМГ , гептил )
Окислители для жидких видов топлива
  • Пероксиды , надпероксиды и неорганические озониды
  • органические нитросоединения и эфиры азотной кислоты (алкилнитраты)
  • Тетраоксид диазота (АТ , Амил )
  • Гелеобразное.
  • Гибридное.
Свободные радикалы
  • Рабочие тела для электрореактивных двигателей.
Ядерные топлива

Топливо космических ракет и аппаратов

Вывод космических аппаратов за пределы земной атмосферы и разгон до орбитальных скоростей требует огромных энергозатрат. Используемые в настоящее время топлива и конструкционные материалы ракет обеспечивают соотношение масс на старте и на орбите не лучше 30:1. Поэтому масса космической ракеты на старте составляет сотни и даже тысячи тонн. Отрыв такой массы от стартового стола требует превосходящей реактивной тяги двигателей . Поэтому основное требование к топливу первой ступени ракет - возможность создания значительной тяги при приемлемых габаритах двигателя и запасах топлива. Тяга прямо пропорциональна удельному импульсу и массовому расходу топлива. Т.е. топлива с высоким удельным импульсом требуется меньше для вывода на орбиту равной нагрузки. Удельный импульс обратно пропорционален молекулярному весу продуктов горения, что означает низкую плотность высокоэффективного топлива и, соответственно, значительный объем и вес конструкции двигателя и топливной системы. Поэтому при выборе топлив ищут компромисс между весом конструкции и весом топлива. На одном конце этого выбора находится топливная пара водород +кислород с наивысшим удельным импульсом и низкой плотностью. На другом конце находится твердое топливо на основе перхлората аммония с низким удельным импульсом, но высокой плотностью.

Помимо тяговых возможностей топлива, учитываются и другие факторы. Неустойчивость горения некоторых топлив зачастую приводила к взрывам двигателей. Высокая температура горения некоторых топлив предъявляла повышенные требования к конструированию, материалам и технологии двигателей. Криогенные топлива утяжеляли ракету теплоизоляцией, затрудняли выбор хладостойких материалов, усложняли проектирование и отработку. Поэтому на заре космической эры получило широкое распространение такое легкое в получении, хранении и использовании топливо как несимметричный диметилгидразин (НДМГ). При этом оно имело вполне приемлемые тяговые характеристики, поэтому довольно широко используется и в наше время.

Помимо технических факторов важны экономические, исторические и социальные. Криогенные топлива требуют дорогой сложной специфической инфраструктуры космодрома для получения и хранения криогенных материалов, таких как жидкие кислород и водород. Высокотоксичные топлива, такие как НДМГ, создают экологические риски для персонала и мест падения ступеней ракет, экономические риски последствий заражения территорий при аварийных ситуациях.

В ракетах для запуска космических аппаратов в настоящее время, в основном, используются четыре вида топлива:

  • Керосин + жидкий кислород . Популярное, дешевое топливо с великолепно развитой и отработанной линейкой двигателей и топливной инфраструктурой. Имеет неплохую экологичность. Лучшие двигатели обеспечивают удельный импульс (УИ) немногим выше 300 секунд при атмосферном давлении.
  • Несимметричный диметилгидразин + тетраоксид азота . Чрезвычайно токсичное топливо. Однако высокая устойчивость горения, относительная простота топливной арматуры, легкость хранения, хорошая плотность топлива, хорошие энергетические характеристики предопределили широкое распространение. Сегодня предпринимаются усилия по отказу от НДМГ. УИ примерно аналогичен кислород-керосиновой паре.
  • Жидкий водород + жидкий кислород. Низкая плотность и чрезвычайно низкие температуры хранения водорода делает очень сложным использование топливной пары в первой ступени ракет-носителей. Однако высокая эффективность приводит к широкому использованию в верхних ступенях ракет-носителей, где приоритет тяги уменьшается, а цена массы растет. Топливо имеет великолепную экологичность. УИ лучших двигателей на уровне моря свыше 350 секунд, в вакууме - 450 секунд.
  • Смесевое твёрдое ракетное топливо на основе перхлората аммония . Дешевое топливо, но требует высокой культуры производства. Широко используется в западном ракетостроении на первой ступени ракет благодаря легкости получения значительной тяги. Двигателями на твердом топливе сложно управлять по вектору тяги, поэтому их часто ставят в параллель с небольшими жидкостными двигателями, которые обеспечивают управляемость полета. Имеет низкую экологичность. Типовой УИ - 250 секунд.

Наблюдается также высокий интерес к перспективной топливной паре метан + жидкий кислород.

Напишите отзыв о статье "Ракетное топливо"

Примечания

Ссылки

Отрывок, характеризующий Ракетное топливо

– Они! Батюшки родимые!.. Ей богу, они. Четверо, конные!.. – кричала она.
Герасим и дворник выпустили из рук Макар Алексеича, и в затихшем коридоре ясно послышался стук нескольких рук во входную дверь.

Пьер, решивший сам с собою, что ему до исполнения своего намерения не надо было открывать ни своего звания, ни знания французского языка, стоял в полураскрытых дверях коридора, намереваясь тотчас же скрыться, как скоро войдут французы. Но французы вошли, и Пьер все не отходил от двери: непреодолимое любопытство удерживало его.
Их было двое. Один – офицер, высокий, бравый и красивый мужчина, другой – очевидно, солдат или денщик, приземистый, худой загорелый человек с ввалившимися щеками и тупым выражением лица. Офицер, опираясь на палку и прихрамывая, шел впереди. Сделав несколько шагов, офицер, как бы решив сам с собою, что квартира эта хороша, остановился, обернулся назад к стоявшим в дверях солдатам и громким начальническим голосом крикнул им, чтобы они вводили лошадей. Окончив это дело, офицер молодецким жестом, высоко подняв локоть руки, расправил усы и дотронулся рукой до шляпы.
– Bonjour la compagnie! [Почтение всей компании!] – весело проговорил он, улыбаясь и оглядываясь вокруг себя. Никто ничего не отвечал.
– Vous etes le bourgeois? [Вы хозяин?] – обратился офицер к Герасиму.
Герасим испуганно вопросительно смотрел на офицера.
– Quartire, quartire, logement, – сказал офицер, сверху вниз, с снисходительной и добродушной улыбкой глядя на маленького человека. – Les Francais sont de bons enfants. Que diable! Voyons! Ne nous fachons pas, mon vieux, [Квартир, квартир… Французы добрые ребята. Черт возьми, не будем ссориться, дедушка.] – прибавил он, трепля по плечу испуганного и молчаливого Герасима.
– A ca! Dites donc, on ne parle donc pas francais dans cette boutique? [Что ж, неужели и тут никто не говорит по французски?] – прибавил он, оглядываясь кругом и встречаясь глазами с Пьером. Пьер отстранился от двери.
Офицер опять обратился к Герасиму. Он требовал, чтобы Герасим показал ему комнаты в доме.
– Барин нету – не понимай… моя ваш… – говорил Герасим, стараясь делать свои слова понятнее тем, что он их говорил навыворот.
Французский офицер, улыбаясь, развел руками перед носом Герасима, давая чувствовать, что и он не понимает его, и, прихрамывая, пошел к двери, у которой стоял Пьер. Пьер хотел отойти, чтобы скрыться от него, но в это самое время он увидал из отворившейся двери кухни высунувшегося Макара Алексеича с пистолетом в руках. С хитростью безумного Макар Алексеич оглядел француза и, приподняв пистолет, прицелился.
– На абордаж!!! – закричал пьяный, нажимая спуск пистолета. Французский офицер обернулся на крик, и в то же мгновенье Пьер бросился на пьяного. В то время как Пьер схватил и приподнял пистолет, Макар Алексеич попал, наконец, пальцем на спуск, и раздался оглушивший и обдавший всех пороховым дымом выстрел. Француз побледнел и бросился назад к двери.
Забывший свое намерение не открывать своего знания французского языка, Пьер, вырвав пистолет и бросив его, подбежал к офицеру и по французски заговорил с ним.
– Vous n"etes pas blesse? [Вы не ранены?] – сказал он.
– Je crois que non, – отвечал офицер, ощупывая себя, – mais je l"ai manque belle cette fois ci, – прибавил он, указывая на отбившуюся штукатурку в стене. – Quel est cet homme? [Кажется, нет… но на этот раз близко было. Кто этот человек?] – строго взглянув на Пьера, сказал офицер.
– Ah, je suis vraiment au desespoir de ce qui vient d"arriver, [Ах, я, право, в отчаянии от того, что случилось,] – быстро говорил Пьер, совершенно забыв свою роль. – C"est un fou, un malheureux qui ne savait pas ce qu"il faisait. [Это несчастный сумасшедший, который не знал, что делал.]
Офицер подошел к Макару Алексеичу и схватил его за ворот.
Макар Алексеич, распустив губы, как бы засыпая, качался, прислонившись к стене.
– Brigand, tu me la payeras, – сказал француз, отнимая руку.
– Nous autres nous sommes clements apres la victoire: mais nous ne pardonnons pas aux traitres, [Разбойник, ты мне поплатишься за это. Наш брат милосерд после победы, но мы не прощаем изменникам,] – прибавил он с мрачной торжественностью в лице и с красивым энергическим жестом.
Пьер продолжал по французски уговаривать офицера не взыскивать с этого пьяного, безумного человека. Француз молча слушал, не изменяя мрачного вида, и вдруг с улыбкой обратился к Пьеру. Он несколько секунд молча посмотрел на него. Красивое лицо его приняло трагически нежное выражение, и он протянул руку.
– Vous m"avez sauve la vie! Vous etes Francais, [Вы спасли мне жизнь. Вы француз,] – сказал он. Для француза вывод этот был несомненен. Совершить великое дело мог только француз, а спасение жизни его, m r Ramball"я capitaine du 13 me leger [мосье Рамбаля, капитана 13 го легкого полка] – было, без сомнения, самым великим делом.
Но как ни несомненен был этот вывод и основанное на нем убеждение офицера, Пьер счел нужным разочаровать его.
– Je suis Russe, [Я русский,] – быстро сказал Пьер.
– Ти ти ти, a d"autres, [рассказывайте это другим,] – сказал француз, махая пальцем себе перед носом и улыбаясь. – Tout a l"heure vous allez me conter tout ca, – сказал он. – Charme de rencontrer un compatriote. Eh bien! qu"allons nous faire de cet homme? [Сейчас вы мне все это расскажете. Очень приятно встретить соотечественника. Ну! что же нам делать с этим человеком?] – прибавил он, обращаясь к Пьеру, уже как к своему брату. Ежели бы даже Пьер не был француз, получив раз это высшее в свете наименование, не мог же он отречься от него, говорило выражение лица и тон французского офицера. На последний вопрос Пьер еще раз объяснил, кто был Макар Алексеич, объяснил, что пред самым их приходом этот пьяный, безумный человек утащил заряженный пистолет, который не успели отнять у него, и просил оставить его поступок без наказания.
Француз выставил грудь и сделал царский жест рукой.
– Vous m"avez sauve la vie. Vous etes Francais. Vous me demandez sa grace? Je vous l"accorde. Qu"on emmene cet homme, [Вы спасли мне жизнь. Вы француз. Вы хотите, чтоб я простил его? Я прощаю его. Увести этого человека,] – быстро и энергично проговорил французский офицер, взяв под руку произведенного им за спасение его жизни во французы Пьера, и пошел с ним в дом.
Солдаты, бывшие на дворе, услыхав выстрел, вошли в сени, спрашивая, что случилось, и изъявляя готовность наказать виновных; но офицер строго остановил их.
– On vous demandera quand on aura besoin de vous, [Когда будет нужно, вас позовут,] – сказал он. Солдаты вышли. Денщик, успевший между тем побывать в кухне, подошел к офицеру.
– Capitaine, ils ont de la soupe et du gigot de mouton dans la cuisine, – сказал он. – Faut il vous l"apporter? [Капитан у них в кухне есть суп и жареная баранина. Прикажете принести?]
– Oui, et le vin, [Да, и вино,] – сказал капитан.

Французский офицер вместе с Пьером вошли в дом. Пьер счел своим долгом опять уверить капитана, что он был не француз, и хотел уйти, но французский офицер и слышать не хотел об этом. Он был до такой степени учтив, любезен, добродушен и истинно благодарен за спасение своей жизни, что Пьер не имел духа отказать ему и присел вместе с ним в зале, в первой комнате, в которую они вошли. На утверждение Пьера, что он не француз, капитан, очевидно не понимая, как можно было отказываться от такого лестного звания, пожал плечами и сказал, что ежели он непременно хочет слыть за русского, то пускай это так будет, но что он, несмотря на то, все так же навеки связан с ним чувством благодарности за спасение жизни.
Ежели бы этот человек был одарен хоть сколько нибудь способностью понимать чувства других и догадывался бы об ощущениях Пьера, Пьер, вероятно, ушел бы от него; но оживленная непроницаемость этого человека ко всему тому, что не было он сам, победила Пьера.

Начнем с самого главного – с Km0. Это соотношение очень важно для ракетного двигателя, т.к. топливо в нем может гореть по-разному. Все таки – это не обычное горение дров в камине, где в качестве окислителя выступает кислород воздуха. Горение топлива в камере ракетного двигателя – это, в первую очередь, химическая реакция окисления с выделением тепла. А протекание химических реакций существенно зависит от того, сколько веществ (их соотношение) вступает в реакцию. Как засыпаться на защите курсового проекта, экзамена или сдаче зачёта. Значение Km0 зависит от валентности, которую могут проявлять химические элементы в теоретической форме уравнения химической реакции. Пример для ЖРТ: АТ+НДМГ .

Классификация химических топлив для ракетных двигателей

Глоссарий

  • ЖРД(РД)-жидкостный ракетный двигатель.
  • ХРТ-химическое ракетное топливо.
  • ЖРТ-жидкие ракетные топлива.
  • ТНА-турбонасосный агрегат.
  • КС- камера сгорания.
  • КМ-конструкционные материалы.
  • О-окислитель.
  • Г-горючее.
  • Ракетное топливо (ТК, что бы не путать с РТ, см.ниже)-вещество, подвергающееся химическим, ядерным или термоэлектрическим реакциям в ракетном двигателе, для создания его тяги.
  • Рабочее тело (РТ)-вещество, с которым происходят различные физико-химические преобразования внутри РД, составляющие его рабочий процесс.
  • Стехиометрическое соотношение компонентов топлива (Km0)()-отношение массы окислителя к массе горючего при стехиометрических реакциях.
  • Состав топлива-горючая и негорючая части (в общем случае).
    Виды топлив (в общем случае).

Важный параметр-коэффициент избытка окислителя (обозн. греческой “α” с индексом «ок.») и массовое соотношение компонентов Kм.

Kм=(dmок./dt)/(dmг../dt),

т.е. отношение массового расхода окислителя к массовому расходу горючего. Он специфичен для каждого топлива. В идеальном случае представляет собой стехиометрическое соотношение окислителя и горючего, т.е. показывает сколько кг окислителя нужно для окисления 1 кг горючего. Однако реальные значения отличаются от идеальных. Соотношение реального Kм к идеальному и есть коэффициент избытка окислителя.

Как правило αок.<=1. И вот почему. Зависимости Tk(αок.) и Iуд.(αок.) нелинейны и для многих топлив последняя имеет максимум при αок. не при стехиометрическом соотношении компонентов, т.е макс. значения Iуд. получаются при некотором снижении количества окислителя по отношению к стехиометрическому.

Требования к ЖРТ:

1. Требования с точки зрения термогазодинамики.
2. Конструкторские.
3. Эксплуатационные.

Эти требования классический пример «Лебедь рак и щука» , которые тянут в разные стороны:

  • С точки зрения термогазодинамики ЖРД, для получения макс. Iуд необходимо, что бы: молекулярная масса продуктов сгорания была минимальной, максимальным было удельное теплосодержание.
  • С точки зрения конструктора топливо должно: иметь максимальную плотность, особенно на первых ступенях. Это требование очевидно не согласуется со стремлением к минимальной молекулярной массе.


С точки зрения эксплуатации:

  • топливо должно быть химически стабильным;
  • желательно, что бы хранение и заправка топлива не вызывали особых проблем;


  • минимальная взрывоопасность топлива;

  • минимальная токсичность как самого топлива, так и продуктов сгорания;
  • минимальная стоимость и освоенная технология производства.

Сюда также добавляются дополнительные требования, из-за которых следует искать КОНСЕНСУСЫ и КОМПРОМИСЫ:

  • хотя бы один компонент должен иметь хорошие свойства как охладителя. Это необходимо из-за того, что надо же чем то охлаждать КС.


  • желательно, что бы один из компонентов топлива был хорошим рабочим телом для турбины ТНА;

  • большое значение имеет давление насыщенных паров (это грубо говоря давление при котором жидкость начинает кипеть при данной температуре). Этот параметр сильно влияет на разработку насосов и вес баков.

  • минимальная агрессивность к КМ ЖРД. В противном случае приходится принимать специальные меры для защиты конструкции от топлива.

Все домашние (гаражные) манипуляции с такими химическими компонентами чрезвычайно опасны и к местам их разлива без ОЗК и противогаза-ЛУЧШЕ не подходить:


Звонить в МЧС. Всё профессионально подберут.

ЖИДКОЕ РАКЕТНОЕ ТОПЛИВО - химическое ракетное топливо , все компоненты которого в условиях эксплуатации находятся в жидком состоянии. Современные ЖРД базируются на использовании двухкомпонентного ракетного топлива , выделяющего энергию в результате взаимодействия окислителя и горючего.

В зависимости от типа участвующих в реакции окисления компонентов такое топливо может быть самовоспламеняющимся ракетным топливом и несамовоспламеняющимся ракетным топливом . В последнем случае для химического зажигания основного топлива используют пусковое топливо . Нашли применение и унитарные ракетные топлива .

В состав жидкого ракетного топлива для улучшения характеристик и эффективности ракетного топлива вводят различные присадки, добавляют мелкодисперсные порошки некоторых металлов (см. металлсодержащее топливо ). С этой целью изучаются также многокомпонентные ракетные топлива (в т.ч. трёхкомпонентное ракетное топливо ), способные обеспечить большее значение удельного импульса.

Основные требования, предъявляемые к жидким ракетным топливам : обеспечение заданного удельного импульса; хорошая химическая стабильность; взрывобезопасность в условиях эксплуатации; пригодность и достаточность одного из компонентов для охлаждения ЖРД (см. охлаждающая способность топлива ); сохранение жидкого состояния в условиях эксплуатации без неоправданных затрат; совместимость с конструкционными материалами; возможно большая плотность; минимальная вязкость и токсичность; обеспеченность сырьевыми ресурсами.

Наибольшее применение в ракетной технике получили: из окислителей - жидкий кислород , четырёхокись азота , азотнокислотные ракетные окислители , перекись водорода ; из горючих - керосин , монометилгидразин , несимметричный диметилгидразин , гидразин , жидкий водород , амины и др. (удельный импульс 2500-4500 м/с). Как перспективные компоненты топлива изучаются фторные окислители , бороводороды , а также сочетания жидких компонентов топлива с лёгкими металлами (литий, бериллий, алюминий) и др. (удельный импульс 3500-5000 м/с).