ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Адиабатическая система охлаждения воздуха. Адиабатические системы охлаждения. А что в России

Описание:

Очевидно, что даже в рамках только одной зоны, где люди занимаются физическими упражнениями, системы кондиционирования должны проектироваться с учетом того, что в пределах такой зоны для различных видов физической деятельности выделяются отдельные участки и воздухоподготовка для них должна быть организована особым образом.

Климатический комфорт в фитнес-центрах

Адиабатическое охлаждение с регенерацией теплоты

Фитнес-центры представляют собой отдельные заведения либо входят в состав различных многофункциональных комплексов (плавательных бассейнов, гостиниц и т. д.). В последние годы все чаще под фитнес-центры отводятся достаточно большие площади (до 5 000 м 2). В состав фитнес-центров входят не только тренажерные залы, но и бассейны, зоны релаксации с гидромассажными установками, солярии, сауны, турецкие бани, а также рестораны и бары.

Очевидно, что даже в рамках только одной зоны, где люди занимаются физическими упражнениями, системы кондиционирования должны проектироваться с учетом того, что в пределах такой зоны для различных видов физической деятельности выделяются отдельные участки и воздухоподготовка для них должна быть организована особым образом.

Обычно такое деление осуществляется уже на этапе составления общего плана объекта, поскольку некоторые виды физических упражнений просто не совместимы: например, аэробика, где много людей в относительно небольшом помещении, и занятия на спортивных тренажерах, которые проходят в более просторных залах, поскольку, помимо места для занимающихся, требуются площади для размещения самих тренажеров. Еще один специфический вид упражнений – это занятия на велотренажерах, где основную проблему составляет влаго-удаление с учетом большого объема скрытой теплоты от спортсменов.

Проектные данные

Для каждой зоны финтес-центра характерны различные показатели заполняемости и видов физических упражнений, что влияет на расчетные параметры микроклимата. На рис. 1 представлена динамика колебаний температуры воздуха в зависимости от вида физической деятельности и одежды спортсменов с индексом теплоизоляции 0,1 clo (очень легкая), 0,5 (легкая) и 0,9 (тяжелая) (сокр. clo – единица теплоизоляции одежды).

Выполняемыми физическими упражнениями обусловлена и тепловая нагрузка, создаваемая человеком. В таблице приведены параметры среднего метаболического индекса (Met) (тепловыделения человека) во время различных видов физических упражнений. Значение 1 Met соответствует 58 Вт/м 2 . Помимо вида физических упражнений тепловыделение определяется также степенью интенсивности этих упражнений. У людей нетренированных и не привыкших к большим нагрузкам тепловыделение обычно приближается к максимуму – организм выделяет наибольшее количество теплоты, большей частью в скрытой форме (в виде потоотделения), что является тепловой компенсацией и утилизацией повышения температуры, вызванной мышечным напряжением. Как правило, упражнения, требующие предельного напряжения, не бывают продолжительными и должны соответствующим образом чередоваться на всем протяжении занятий. Если взять, к примеру, зал велотренажеров, где средняя продолжительность занятий колеблется от 20 до 40 мин, то период максимального напряжения, когда выделяется наибольшее количество теплоты, длится не более 5–10 мин.

Эффективность физического отвода теплоты, в частности скрытой, в значительной степени определяется уровнем относительной влажности воздуха в помещении. Вследствие этого при равном физическом напряжении меньше потеет человек, находящийся в помещении, где относительная влажность воздуха ниже, нежели тот, что занимается в зале с более высокой влажностью воздуха, поскольку в первом случае воздух менее насыщен и в большей степени расположен к поглощению водяного пара, выделямого кожными покровами человека.

В этих обстоятельствах особое значение приобретает регулирование уровня влажности в помещении спортивного зала.

Таблица 1
Вид физического упражнения Met (1 Met = 58 Вт/м 2)
Тренажер 3–4
Современные и народные танцы 4–5
Физкультура 4–6
Теннис 5–7
Аэробика 6–8
Бег 15 км/ч 9
Бег 12 км/ч 8
Бег 9 км/ч 7
Боевые искусства, бокс 7–9
Велотренажер 8–10

Другой важный фактор, который следует обязательно учитывать, – это скорость воздуха, поскольку она определяет скорость теплообмена между телом человека и воздухом в помещении с учетом вида физической нагрузки. В этой связи целесообразно воспользоваться критерием оценки, предложенным профессором Датского технического университета П. Фангером (P. Ole Fanger), который, в частности, отмечает: «Состояние комфорта напрямую зависит от средней температуры кожных покровов и тепловой мощности, отдаваемой организмом в форме выделения жидкости, происходящей главным образом при помощи механизма потоотделения».

Общее теплообразование человека, занимающегося спортом в соответствующей спортивной одежде, составляет 390 Вт, из которых 135 Вт составляет явная теплота и 255 Вт – скрытая теплота (рис. 2). Учитывая, что испарительная теплота составляет 2 501 Дж/г, значению 255 Вт соответствует выделение водяного пара в объеме 367 г/ч на человека.

Расчетные параметры

На основании вышесказанного и с учетом назначения отдельных залов, выделенных для различных видов спорта, можно определить минимальные расчетные параметры объемного расхода воздуха для отдельных помещений. При расчете воздухообмена следует учитывать количество водяного пара, создаваемого потоотделением, количество занимающихся людей и конкретный вид физических упражнений. Расчета объемного расхода только на основании данных о требуемом воздухообмене (обычно от 60 до 120 м 2 /ч на человека) здесь недостаточно, поскольку необходимы поправки на влагоудаление и тепловую потребность. После определения общего объема влаговыделений в помещении (q mv , выраженный в г/ч) объемный расход воздуха, требующийся для удаления влаги из воздуха, определяется разницей между абсолютной влажностью внутреннего и приточного воздуха и рассчитывается по формуле:

q ma = q mu / x а – x m , кг/ч,

V a = q ma / p а, м 3 /ч.

Количество воздуха, необходимого для нейтрализации физической тепловой нагрузки (q s), определяется разницей между температурой внутреннего и приточного воздуха и рассчитывается по формуле:

V a = q s (физическая тепловая нагрузка) / 0,34 ∆t, м 3 /ч.

Следует отметить (кстати, очень часто это обстоятельство упускается из виду), что тело человека во время продолжительных физических упражнений в заметных объемах потребляет кислород из воздуха. Таким образом, чем интенсивней вид спорта, для которого предназначено помещение, тем важнее обеспечить требуемый воздухообмен независимо от того, насколько фактические тепловлажностные параметры помещения удовлетворяют нормативным требованиям или расчетным данным. Для того чтобы обеспечить необходимый комфорт, помещения финтес-центров в рабочем режиме должны непрерывно обеспечиваться постоянным притоком наружного воздуха.

Специальное оборудование

Для кондиционирования фитнес-центров особый интерес представляют специально разработанные системы воздухоподготовки. Это оборудование имеет ряд отличительных конструктивных особенностей:

Обеспечивается холодильная мощность и влагоудаление в объемах, необходимых для конкретного вида физических упражнений;

Предоставляется возможность точной регулировки параметров микроклимата в зависимости от выполняемых физических упражнений, когда значения объемного расхода воздуха и тепловлажностные параметры приточного воздуха устанавливаются в зависимости от явной и скрытой теплоты, подлежащей отводу.

Для данного оборудования характерно пониженное потребление энергии благодаря двум современным технологиям:

Регенерация теплоты вытяжного воздуха при помощи двух теплообменников с перекрестными потоками, которые установлены в линию и функционируют в противотоке;

Система адиабатического охлаждения в сочетании с системой охлаждения на базе холодильного цикла.

Значение расхода воздуха данного оборудования меняется в диапазоне от 1 200 до 27 000 м 2 /ч, общая холодильная нагрузка (адиабатическая система плюс холодильная установка) составляет от 6,6 до 159 кВт.

Речь идет о полностью независимых системах, поставляемых в комплекте с электрооборудованием и системой автоматического регулирования. Приточные и вытяжные вентиляторы имеют высокопроизводительный свободно вращающийся импеллер с загнутыми лопастями, установленный напрямую на вал электродвигателя, скорость вращения которого регулируется отдельным инвертером. Работа системы в целом регулируется специальными вибрационными датчиками. Рукавные фильтры (класса EU4) устанавливаются на всасывание (наружный воздух и вытяжной воздух), легко снимаются, интервалы техобслуживания соблюдаются по показаниям датчика дифференциального давления, выведенного на главный электрический щит.

Система регенерации теплоты вытяжного воздуха построена на основе двух пластинчатых теплообменников с перекрестными потоками, монтируемых в линию.

Блок регенерации позволяет обеспечить чрезвычайно низкую потерю нагрузки при росте коэффициента теплообмена и КПД энергетической регенерации до 75 %. Поддон сбора конденсата с принудительным сливом выполнен из полипропилена. Адиабатическое охлаждение воздуха происходит путем разбрызгивания воды по поверхности водяных обменников и дает понижение температуры порядка 10 °С. Установка комплектуется форсунками, системой регулировки уровня воды, клапаном подачи и отвода воды, рециркуляционным насосом, фильтром, системой смены воды, циклом автоматической мойки.

Режимы работы

На рис. 3–7 показаны режимы работы данного оборудования в различное время года. На рис. 3 показан режим с полной регенерацией теплоты, обеспечивающий летнее охлаждение или зимний нагрев воздуха в помещении. В переходный период установку можно запускать в режиме с частичной регенерацией теплоты путем перепускания (байпасирования) с теплообменника определенного объема воздуха (рис. 4) либо в режиме полного естественного охлаждения в переходный или ночной период посредством полного байпасирования (без регенерации теплоты) при росте наибольшего объемного расхода воздуха до 10 % (рис. 5).

В летний период используется система адиабатического охлаждения (рис. 6), которая при высокой температуре наружного воздуха может интегрироваться с системой охлаждения и влагоудаления посредством холодильного цикла (рис. 7).

Переведено с сокращениями из журнала «RCI».

Перевод с итальянского С. Н. Булекова .

Один из действенных способов повысить эффективность использования энергии в ЦОДе - применить адиабатическое охлаждение воздуха, в основе которого лежат уникальные свойства воды.

Как известно, для оценки эффективности использования энергии в ЦОДах применяют показатель PUE (Power Usage Effectiveness) - отношение общего энергопотребления к энергопотреблению ИТ-оборудования дата-центра. Существует и обратный показатель - DCE (Data Center Efficiency). Типовыми считаются значения PUE от 1,5 до 2,0; последнее означает, что на ИТ-оборудование расходуется только 50% потребляемой энергии (DCE = 0,5). В случае традиционных систем механического охлаждения с использованием специализированных кондиционеров CRAC (Computer Room Air Conditioner) на них обычно приходится примерно 35-40% общего энергопотребления.

Но есть подход, позволяющий гораздо более эффективно использовать энергию в ЦОДе, - это адиабатическое охлаждение воздуха.

Принцип метода

Адиабатическое охлаждение обусловлено уникальными свойствами воды, которая имеет одно из наибольших среди жидкостей значение скрытой теплоты парообразования (584,8 ккал/кг). Принцип его состоит в распылении воды в виде мельчайших капель - с энергетической точки зрения это значительно эффективнее механического охлаждения (тот же принцип встречается и в природных явлениях). В адиабатических условиях, в которых общее энергосодержание среды (выражаемое энтальпией) остается неизменным, при испарении 1 л воды в час 680 Вт (584,8/0,86, где 0,86 - переводной коэффициент ккал/Вт) явного тепла, содержащегося в воздухе и характеризуемого его температурой, переходит в скрытое тепло, содержащееся в образующихся парах воды. При использовании увлажнителей воздуха распылительного типа затраты внешней энергии сравнительно невелики, их типовое значение составляет всего 4 Вт на 1 л распыляемой воды, что обусловлено относительно небольшим значением поверхностного натяжения воды. Таким образом, эффективность процесса адиабатического охлаждения в целом характеризуется отношением 680/4 = 170.

Прямое и косвенное охлаждение

Различают два способа адиабатического охлаждения: прямое DEC (Direct Evaporative Cooling) и косвенное IEC (Indirect Evaporative Cooling); схема их конструктивной реализации показана на рис. 1. Прямое охлаждение осуществляется путем распыления воды на стороне притока. Охлажденный за счет испарения взвешенных в воздухе капелек воды приточный воздух подается непосредственно во внутренний объем обслуживаемого объекта. При косвенном же охлаждении вода распыляется на стороне вытяжки. Охлажденный воздух поступает в пластинчатый теплообменник, где с эффективностью примерно 65% происходит обмен явным теплом без передачи скрытого тепла, сосредоточенного в парах воды, которые образуются за счет испарения распыляемой воды на вытяжке.

Условия использования

Оба способа имеют определенные ограничения в использовании в зависимости от тепло-влажностных характеристик атмосферного воздуха. При относительно низких температурах и небольшой влажности атмосферного воздуха прямое адиабатическое охлаждение DEC существенно расширяет возможности популярного способа свободного охлаждения, или фрикулинга (FC), осуществляемого без распыления воды как на притоке, так и на вытяжке. Фрикулинг возможен при условии, что температура атмосферного воздуха не превышает температуры внутри обслуживаемого объекта. В случае DEC за счет адиабатического испарения распыляемой воды температура воздуха на притоке дополнительно понижается по отношению к температуре атмосферного воздуха. Таким образом, обеспечивается естественное охлаждение, без применения механического, при температурах атмосферного воздуха, несколько превышающих температуру внутри обслуживаемого объекта. Однако при этом существует ограничение, связанное с насыщением воздуха парами воды. Сопутствующее этому увеличение энтальпии не должно превышать значений, отвечающих требуемым значениям температуры и относительной влажности внутри обслуживаемого объекта.

В противоположность этому адиабатическое охлаждение IEC возможно только тогда, когда температура воздуха и его энтальпия внутри обслуживаемого объекта ниже температуры и энтальпии атмосферного воздуха.

Следует также иметь в виду, что фрикулинг помимо указанного выше температурного ограничения возможен только при условии, что абсолютная влажность (влагосодержание) атмосферного воздуха не превышает значения, соответствующего требуемым значениям температуры и относительной влажности внутри обслуживаемого объекта.

Отсюда на долю механического охлаждения (Mechanical Cooling, MC) остается лишь такое сочетание тепло-влажностных характеристик атмосферного воздуха, когда одновременно и его температура, и абсолютная влажность превышают значения, соответствующие требуемым значениям температуры и относительной влажности внутри обслуживаемого объекта.

Оптимальные значения температуры и относительной влажности в ЦОДах задаются рекомендациями ASHRAE TC 9.9 (редакция 2008 г.) и составляют соответственно 230°С и 60%. На рис. 2 представлена i-d-диаграмма, отражающая перечисленные выше ограничения с учетом этих значений, на которой четко видны области преимущественного использования различных методов охлаждения ЦОДов.

Сравнительный анализ энергопотребления

Мы провели сравнительную оценку энергопотребления при использовании различных методов охлаждения ЦОДов (результаты этих расчетов сведены в таблицу). При этом предполагалось, что кондиционеры CRAC, используемые в системе механического охлаждения, имеют значение холодильного коэффициента COP (Coefficient of Performance, характеризует отношение холодопроизводительности к потребляемой мощности), равное 2,8, как у большинства моделей присутствующих на рынке устройств. Энергопотребление используемых в системах водоподготовки установок обратного осмоса (Reverse Osmos, RO) принято равным 2,4 вт/(л/ч), что соответствует типовым значениям.

В качестве примеров ЦОДов, где успешно используется адиабатическое охлаждение, можно назвать HP Wynyard Park (Миддлсбро, Великобритания; действует с апреля 2009 г., достигнуто значение PUE 1,2) и дата-центр Fujitsu (Нюрнберг, Германия; действует с февраля 2010 г., достигнуто значение PUE 1,25). В обоих случаях снижение энергозатрат на нужды систем охлаждения ЦОДа составило около 95% (т.е. фактические затраты составляют порядка 5% от имеющих место при механическом охлаждении), что в первом примере обеспечило годовую экономию в $4,16 млн. И эти цифры говорят сами за себя.

В центрах обработки данных требуется постоянно охлаждать воздух для компенсации тепловых нагрузок и поддержания температуры в помещениях машинных залов в пределах рекомендуемых рабочих диапазонов. Энергопотребление климатического оборудования при использовании традиционных методов охлаждения на базе чиллеров, прецизионных кондиционеров или приточно-вытяжных установок достигает 33–40% от суммарной мощности, потребляемой ЦОДом.

Эффективность ЦОДов, как правило, оценивают по коэффициенту Power Usage Effectiveness (PUE), который рассчитывается как отношение общего энергопотребления ЦОДа к энергопотреблению собственно серверов и телекоммуникационного оборудования. В недавнем прошлом коэффициент PUE большинства ЦОДов был равен 2,0, то есть только 50% всей потребляемой энергии использовалось по назначению - для питания оборудования ИТ. Обновленная версия рекомендаций для проектировщиков ASHRAE Technical Committee 9.9 «Указания по проектированию телекоммуникационного оборудования с учетом воздействия на окружающую среду» уточняет требования к энергоэффективности - в частности, рекомендуемый PUE устанавливается не выше 1,5.

Диаграмма на рис. 1 показывает, как изменились рекомендации ASHRAE. Граница, обозначенная красным цветом, соответствует рекомендациям ASHRAE 2004 года. Оранжевая зона определяет расширенные (в рекомендациях 2008 года) диапазоны климатических параметров, в пределах которых производители ИТ-оборудования должны тестировать свою продукцию для обеспечения требуемой надежности при эксплуатации. Зеленая зона определена ASHRAE как допустимый диапазон климатических параметров, при которых ИТ-оборудование способно продолжать функционировать, однако надежность его работы при этом может снизиться, вследствие чего такие условия эксплуатации допустимы не более нескольких дней в году.

За счет расширения рекомендованных границ проектировщики получают возможность применять альтернативные решения по кондиционированию воздуха, обеспечивающие снижение энергопотребления ЦОДа. Одним из таких решений являются системы кондиционирования, способные работать в режиме фрикулинга. При этом следует различать системы, где используются теплообменники с промежуточным теплоносителем, и системы, в которых холодный воздух в межсезонье подается непосредственно в помещение. Последние обеспечивают подачу необходимого объема наружного воздуха в ЦОД при условии, что наружный воздух имеет приемлемые параметры. Поступающий извне воздух распределяется по помещениям ЦОДа и нагревается за счет теплообмена с ИТ-оборудованием. Далее, вместо механического охлаждения и рециркулирования, воздух просто выбрасывается из здания наружу.

В отличие от систем воздушного фрикулинга, водяные системы используют наружный воздух для охлаждения жидкости, циркулирующей внутри теплообменника. Затем охлажденный теплоноситель поступает в другой теплообменник, где взаимодействует с воздухом в помещении, охлаждая его. Из-за использования промежуточного теплообменника в водяных системах их энергоэффективность ниже, чем у систем воздушного фрикулинга.

Оба варианта все же требуют определенных энергозатрат, так как используют компоненты, потребляющие энергию, такие как вентиляторы, однако в любом случае эти затраты ниже, чем при механическом охлаждении. Кроме того, необходимо учитывать, что оба метода требуют дополнительного механического охлаждения воздуха в тех случаях, когда параметры наружного воздуха оказываются неприемлемыми для использования фрикулинга.

Последнее происходит за счет испарения воды (например, распыляемой системой высокого давления), в результате чего достигается соответствующее понижение температуры воздуха. Энергия, необходимая для перевода воды из жидкого состояния в газообразное, отбирается непосредственно у воздуха, тем самым охлаждая его.

Каждый литр испаренной воды обеспечивает 680 Вт холода при том, что на распыление воды затрачивается порядка 5 Вт электроэнергии.

В сухие и жаркие дни адиабатическая система охлаждает и увлажняет приточный воздух, увеличивая тем самым продолжительность работы установки в режиме воздушного фрикулинга. При этом система автоматизации контролирует параметры температуры и влажности, не допуская выхода влажности за пределы, определенные рекомендациями ASHRAE.

Дополнительная экономия может быть получена за счет установки второго адиабатического охладителя и пластинчатого рекуператора (см. рис. 2). Установленный в вытяжной секции адиабатический охладитель способен существенно снизить температуру вытяжного воздуха, который, в свою очередь, охлаждает приточный воздух, проходящий через рекуператор. Поскольку данный адиабатический охладитель устанавливается в вытяжной секции, для него отсутствует необходимость в ограничении уровня влажности.

Таким образом, системы вентиляции, использующие воздушный фрикулинг и адиабатическое охлаждение, способны радикально сократить потребность в механическом охлаждении, особенно в регионах с теплым климатом.

Диаграмма на рис. 3 иллюстрирует реализацию концепции воздушного фрикулинга с вспомогательным адиабатическим охладителем в соответствии с рекомендованными ASHRAE значениями параметров приточного воздуха 23°C / 60% RH. Область, закрашенная синим цветом, соответствует режиму воздушного фрикулинга. Зеленая область отражает дополнительные преимущества при использовании прямого испарительного охлаждения (Direct Evaporative Cooling, DEC), а желтая область показывает возможности косвенного адиабатического охлаждения (Indirect Evaporative Cooling, IEC). Область условий, при которых требуется только механическое охлаждение, сократилась - она показана красным цветом.

В среднем, по сравнению с традиционными системами, использующими механическое охлаждение, оказывается возможным снизить потребление энергии на 80–95% при использовании DEC и на 30–93% при использовании IEC. В таблице приведены сравнительные данные для распылительной системы высокого давления и для системы с механическим охлаждением.

Конечно, мы должны принять во внимание то, что вода как используемый ресурс имеет определенную ценность. Но также нельзя забывать про стоимость электроэнергии и эффект от воздействия энергетики на окружающую среду. Известно, что при производстве 1 кВт ч электроэнергии выделяется ориентировочно 500 г диоксида углерода CO 2 (

Как известно, адиабатное увлажнение позволяет не только повысить влажность воздуха, но и понизить его температуру, тем самым совместив воедино процессы увлажнения и охлаждения. При этом для реализации адиабатного увлажнения практически не требуется затрат электроэнергии - расходуется только вода. Таким образом, стоимость охлажденного и увлажненного воздуха низка, что при правильном его использовании может существенно повысить энергоэффективность различных систем.

Адиабатное увлажнение воздуха в помещении

Наиболее простым применением процесса адиабатного увлажнения является охлаждение вентиляционного воздуха - как приточного, так и рециркуляционного. Охлаждение происходит без применения парокомпрессионного холодильного цикла и существенных энергозатрат. Однако полученный воздух содержит много влаги, и непосредственная подача его в помещение создаст некомфортные для человека условия.

Например, при адиабатном увлажнении стандартного для Московского региона наружного воздуха с температурой 28 °C и энтальпией 54 кДж/кг (относительная влажность 43%) до комфортных для человека 22 °C влажность возрастет до 74%, что выше рекомендуемого максимума в 60%.

Ситуация становится еще хуже, если наружный воздух будет еще более теплым или влажным (адиабатное охлаждение с 26 °C/55% до 22 °C приведет к 78% на выходе, а с 30 °C/40% - к 82%).

Таким образом, прямое охлаждение воздуха методом адиабатного увлажнения ограничивается предельной влажностью воздуха 60%, поэтому его приходится рассматривать лишь в качестве вспомогательного процесса при создании комфортного микроклимата в помещении. Один из способов создания комфортных условий с участием адиабатного увлажнения - косвенно-испарительное охлаждение - был рассмотрен в статье «Расчет косвенно-испарительной системы охлаждения» («МИР КЛИМАТА» № 71).

Адиабатное увлажнение воздуха перед конденсатором

Другой вариант использования адиабатного увлажнения - предварительное охлаждение воздуха, который подается к конденсатору системы кондиционирования. Этот способ наиболее востребован в теплое время года.

При этом нет разницы, какая именно систем кондиционирования рассматривается - бытовая сплит-система, мультизональная система или система холодоснабжения на основе чиллеров. Также не имеет значения и исполнение конденсатора (встроенный или выносной), хотя, безусловно, подобные решения проще применять в сочетании с выносным конденсатором. Более того, рассматриваемая система пригодна для использования не только с конденсаторами, но и с сухими градирнями (драйкулерами).

В основе решения - тот факт, что от температуры воздуха, охлаждающего конденсатор, зависит температура конденсации хладагента в парокомпрессионном холодильном цикле и чем ниже эта температура, тем ниже энергозатраты системы охлаждения, то есть выше ее энергоэффективность.

Как известно, снижение температуры конденсации на 1 °C ведет к повышению холодильного коэффициента на 3%. Отталкиваясь от ID-диаграммы, можно сделать вывод, что адиабатное увлажнение вполне способно понизить температуру конденсации даже на 10 °C. А это уже на треть возросшая энергоэффективность системы кондиционирования.

Принципиально схема адиабатного увлажнения воздуха перед конденсатором выглядит следующим образом (рис. 1): вода из источника водоснабжения проходит через систему очистки, далее она нагнетается насосом и распыляется через форсунки в поток воздуха перед конденсатором. Внешний вид установки представлен на рис. 2.

Состав системы

В общем случае система адиабатного увлажнения воздуха перед конденсатором состоит из следующих элементов:

  • система управления со встроенным регулятором;
  • трубы с изготовленными на заказ инжекторами (форсунками) - на рис. 3, смонтированными на стороне забора воздуха;
  • электрический клапан для дренажа воды;
  • редуктор с манометром для установления нужного давления воды для эффективного распыления;
  • Softwater (умягчитель воды) - электронный прибор, уменьшающий жесткость воды для предотвращения * отложения известкового осадка на оребренной поверхности теплообменного аппарата (конденсатора);
электрический клапан для управления подачей воды;
  • термостат защиты от замерзания воды в холодное время года;
  • шкаф управления, защищенный от воздействия воды (исполнение IP65 при установке на улице возле системы увлажнения).
Рис. 3. Внешний вид форсунок
Эффективность увлажнения напрямую зависит от степени распыления воды, то есть от диаметра получаемых капель. В форсунках, применяемых в системах адиабатного увлажнения, диаметр капель, как правило, лежит в диапазоне 0,06–0,08 мм.

Еще одной важной для оценки течения смеси воздуха с каплями воды характеристикой является скорость витания капли. Если скорость витания капли меньше скорости воздушного потока, создаваемой вентилятором конденсатора, то капля уносится воздухом. Вынос капли за границу теплообменника, очевидно, нежелателен. В табл. 1 приведены характерные скорости витания капли в зависимости от диаметра.

Таблица 1. Зависимость скорости витания капли от ее диаметра

d капли, мм v ВИТ, м/с
0,01 0,47
0,05 1,06
0,1 1,48
0,2 2,1
0,3 2,57
0,5 3,32
0,8 4,2
1,0 4,7
2 6,62
3 8,12
4 9,35
5 10,5
7 12,4
8 13,3
9 14,1
10 14,8

Для уменьшения выноса капель за конденсатор скорость воздуха рекомендуется ограничивать 2–2,3 м/с.

Расчет системы адиабатного увлажнения с использованием форсунок

Тепло- и массообмен в камерах характеризуется отношением реального теплообмена к максимально возможному теплообмену в идеальной камере. Это отношение в общем случае выражается формулой:

где I 1 , I 2 - начальная и конечная энтальпии воздуха, кДж/кг; I” в.н. - энтальпия насыщенного воздуха у поверхности воды при ее начальной температуре; ΔI, ΔI и - соответственно реальный и максимальный (идеальный) перепады энтальпий.

В качестве характеристик эффективности процессов тепло- и массообмена приняты два коэффициента эффективности:

где t в.н, t в.к. - начальная и конечная температуры воды, °C; t c1 , t c2 , t м1 , t м2 - начальные и конечные температуры воздуха по сухому и мокрому термометрам, °C.

Коэффициент Е’ назван универсальным потому, что экспериментальная проверка показала его пригодность для описания и расчета всех процессов обработки воздуха водой.

При этом отметим, что при изоэнтальпийных (адиабатных) процессах t м2 = t м1 поэтому Е а = Е’.

В расчетах процессов, протекающих с изменением энтальпии воздуха, дополнительно используют уравнение теплового баланса между воздухом и водой:

где B = W / G - коэффициент орошения.

Коэффициенты E, E’ и E a зависят от диаметра выпускаемого отверстия. В частности, при диаметре 5 мм имеем:

где v и ρ - скорость и плотность воздуха соответственно; формула применима для давления воды до 2,5 бара.

Для интервала температур по мокрому термометру 8 °C - 20 °C уравнение теплового баланса приближенно можно представить так:

Из уравнений (1), (2) и (3) можно получить формулы для определения температур воздуха и воды:

Совместное использование уравнений, описывающих изменения коэффициентов Е’ и Е, и уравнения теплового баланса позволяет выполнять любые расчеты, включая отыскание неизвестных конечных или начальных параметров воздуха. Основными параметрами, которые следует определить при расчете рассматриваемых систем адиабатного увлажнения, являются температура увлажненного воздуха, количество необходимой для увлажнения воды.

Практические аспекты реализации системы

С практической точки зрения немаловажными являются характеристики подаваемой воды.

Максимальная жесткость воды должна быть в пределах 8–12°Ж (°Ж - градус жесткости, единица измерения жесткости воды, введенная в России с 2005 года и соответствующая концентрации щелочно-земельного элемента, численно равной 1/2 его моля, выраженной в мг/дм 3 ; 1°Ж = 1 мг-экв/л). Другими словами, максимальное содержание CaCО 3 составляет 80–120 частей на миллион.

Значение рН (рH - водородный показатель; величина, характеризующая концентрацию ионов водорода) воды должно быть менее 7 для предотвращения появления коррозии на оребренной поверхности теплообменника.

Для правильной работы распылительной системы, избыточное давление воды перед форсункой должно быть не менее 2,5 бара. Расход воды для одной форсунки зависит от конкретной модели инжектора, при давлении 2,5 бара он может колебаться от 1,15 до 1,9 л/мин. (69–114 кг/ч).

С точки зрения компоновки системы необходимо, чтобы распыленная вода не долетала до конденсатора, так как ее появление на поверхности теплообменника ухудшит теплоотдачу и, следовательно, затруднит процесс конденсации. Поэтому рекомендуемое расстояние от форсунок до границы теплообменника составляет 20–50 см.

Кроме того, отметим, что на практике далеко не всегда удается добиться полного испарения распыленной воды. Поэтому, если установка расположена на высоте, а падение неиспарившейся воды вниз нежелательно, необходимы установка поддона и отвод дренажа в систему канализации. Однако чаще всего подобные схемы реализуются для конденсаторов, расположенных либо непосредственно на земле, либо на кровле здания. В этих случаях, как правило, наличие поддона не требуется.

Дополнительные преимущества

Использование системы увлажнения воздуха перед конденсатором дает ряд дополнительных преимуществ. В частности, сухая градирня или выносной воздушный конденсатор подбирается с расчетом на использование при более низкой температуре наружного воздуха, что позволяет уменьшить размеры теплообменной поверхности, а значит, и размеры самого аппарата. Отметим и возможность охлаждения жидкости при более высокой температуре наружного воздуха. Это позволяет использовать оборудование при наружной температуре, превышающей допустимый производителем лимит, ведь фактически подается более холодный воздух, температура которого находится в допустимых пределах.

Кроме того, сочетание адиабатической системы с инверторным частотным регулятором вентиляторов позволяет снизить электропотребление двигателей, значительно снизить уровень звукового давления и оптимизировать водопотребление.

Адиабатное увлажнение воздуха и рекуперация

Еще одной важной сферой применения адиабатного увлажнения являются рекуперативные теплообменники.

Как известно, в теплое время года рекуперация предназначена для охлаждения наружного, более теплого, приточного воздуха за счет вытяжного, более холодного. При этом вытяжной воздух выбрасывается в окружающую среду, и, следовательно, с ним можно делать «все что угодно». В нашем случае предлагается его увлажнить адиабатным методом, в результате, благодаря одновременно полученному охлаждению, рекуперация тепла (или, в нашем случае, холода) станет более эффективной.

Схема рассматриваемой системы представлена на рис. 4. Вытяжной воздух попадает сначала в секцию увлажнения («1» на рис. 4), где охлаждается, и поступает в секцию рекуперации («2»), в которой охлаждает приточный теплый воздух.

Чтобы оценить выгоду от использования секции адиабатного увлажнения перед рекуператором, проведем расчет данной системы.

Параметры наружного воздуха (точка «1», рис. 5):

  • Расчетное давление: Р расч = 0,1 МПа.
  • Температура наружного воздуха: t нар = +28 °C.
  • Энтальпия наружного воздуха: i нар = +54 кДж/кг.
  • Влажность наружного воздуха (определяется по I-d-диаграмме): φ нар = 43%.
Параметры внутреннего воздуха (точка «3», рис. 5):
  • Поддерживаемая в помещении температура: t пом = 22 °C.
  • Влажность, поддерживаемая в помещении: φ пом = 55%
  • Энтальпия воздуха в помещении (определяется по I-d диаграмме): i пом = 45,5 кДж/кг.

Адиабатное увлажнение теоретически позволит добиться относительной влажности до φ = 100%, на практике же значение этого параметра будет около 90%. Таким образом, параметры точки после увлажнителя (точка «4», рис. 5):

  • Влажность φ увл = 55%.
  • Энтальпия i увл = 45,5 кДж/кг.
  • Температура (определяется по I-d-диаграмме): t увл = 17 °C.

Для расчета выходных параметров можно воспользоваться параметром эффективности рекуперации (η=30…85% в зависимости от вида рекуператора). Для нашего случая примем η=45% и определим температуру приточного воздуха после рекуператора t рек (точка «2», рис. 5):

Отметим, что температуру tрек можно определить и исходя из разности температур на холодном конце рекуператора (разность температур между точками «2» и «4»). Опыт показывает, что в системах с малым перепадом температур она составляет 2–6 °C. В нашем случае получилось Δt = t рек - t увл = 28–23 = 5 °C, что хорошо коррелирует с опытными данными.

Если же секция адиабатного увлажнения вытяжного потока перед рекуператором отсутствовала, температура приточного воздуха после рекуператора составила бы:

При расходе приточного воздуха G возд = 10 000 м  3 /ч экономия в холодильной мощности составит:

и его плотность

С одной стороны, это позволяет сэкономить на капитальных затратах, выбрав холодильную установку мощностью почти на 30 кВт меньше (при общей потребной холодопроизводительности в 51,8 кВт экономия в 27,7 кВт составляет более 50%).

С другой стороны, если учесть, что на производство 3 кВт холодильной мощности тратится 1 кВт электроэнергии, обеспечивается экономия 9 кВт электроэнергии.

Заключение

Таким образом, эффект охлаждения в процессе адиабатного увлажнения трудно применить для непосредственного охлаждения воздуха в помещении в связи с тем, что полученный воздух хотя и будет обладать необходимой температурой, но его влажность заметно превысит верхнюю границу комфортного диапазона.

Однако существует ряд возможностей косвенного использования эффекта охлаждения при адиабатном увлажнении - там, где влажность полученного воздуха не имеет значения, а интерес представляет только низкая температура.

Это в полной мере относится к воздуху, который охлаждает конденсатор или драйкулер холодильных установок. За счет установки для распыления воды возможно понизить температуру конденсации хладагента на величину до 10 °C, а следовательно, повысить энергоэффективность системы кондиционирования до 30%.

Еще одной сферой применения адиабатного увлажнения является охлаждение вытяжного потока перед секцией рекуперации приточной установки в теплое время года. За счет увлажнения в рекуператор поступает более холодный воздух и, следовательно, появляется возможность получить на выходе более холодный приточный воздух.

Как показывают практика и расчеты, введение секции увлажнения перед рекуператором позволяет сэкономить более 50% холодильной мощности, требуемой для охлаждения приточного воздуха, что даст положительный экономический эффект как с точки зрения капитальных затрат на холодильное оборудование, так и с точки зрения эксплуатационных расходов на электроэнергию и энергоснабжение системы кондиционирования.

Из всего вышесказанного следует, что для энергоэффективных решений в области систем кондиционирования всегда следует иметь в виду такой инструмент, как адиабатное увлажнение воздуха.

Юрий Хомутский, технический редактор журнала «МИР КЛИМАТА»

В статье использована методика НИИ санитарной техники для расчета адиабатной системы увлажнения с использованием форсунок.

> Адиабатические системы охлаждения

Адиабатическая система охлаждения представляет наиболее эффективный, чистый, безопасный и экономически выгодный способ охлаждения воды в диапазоне температур от 5 до 35°C. Процесс охлаждения происходит в замкнутом контуре. Теплоноситель всегда остается чистым, не испаряется, не подвергается атмосферным загрязнениям и загрязнениям накипью. При эксплуатации такой системы, отсутствует необходимость в водообработке, фильтрации и подпитке воды. Адиабатическая система охлаждения - надежный и безопасный способ охлаждения с минимально возможными эксплуатационными затратами. Комплектная поставка: охладители, система рециркуляционных насосов, баки накопители, фильтрация, контроль и управление всеми составляющими с одного пульта. Возможность подключения к дистанционной системе управления и контроля.

Передовая система охлаждения работает при любых условиях окружающей среды и является прекрасной альтернативой градирням с испарением теплоносителя, также обеспечивая значительные преимущества с точки зрения эксплуатационных затрат и вопросов, связанных с защитой окружающей среды.

94% экономии энергоресурсов по сравнению с чиллером
34% экономии энергоресурсов по сравнению с градирней
99% экономии воды по сравнению с градирней.


* средние результаты подсчитаны согласно различным климатическим условиям и различным тепловым нагрузкам.

Без Риска роста бактерий

Эксплуатационные преимущества «Замкнутый контур»

  • Минимальные эксплуатационные издержки
  • Быстрое и простое текущее обслуживание
  • Модульное соединение
  • Гарантия охлаждения
  • Параллельные (P) и последовательные (S) конфигурации
  • Минимальное воздействие на окружающую среду
  • Система предварительного охлаждения воздуха.
  • Эксплуатационная экономия
  • Экономия воды

3DK охладитель работают, не поглощая воду и только во время жарких дней, он автоматически активирует адиабатическую систему для того, чтобы получить заранее охлажденный воздух.
Такая система использует минимальное количество воды, которая испаряется без прямого контакта с оребренным радиатором, исключая всякий риск осаждения примесей, содержащихся в воде и воздухе, на охладителе.
Более того, при помощи современной геометрии увлажняющих блоков, достигается высокая степень относительной влажности воздуха, используемого для охлаждения, тем самым, улучшается эффективность охладителя.

Экономия энергии.
Использование вентиляторов с бесколлекторным двигателем совместно с устройством регулирования скорости вращения, позволяет снизить уровень шума, продлить долговечность и надежность механизма, не смотря на то, что удельное энергопотребление на 1/3 ниже, чем у традиционной ступенчатой или тиристорной системы.

Принцип работы
В охладителе серии 3DK производственная вода прокачивается через медные трубки с алюминиевым оребрением, расположенных в «V» модуле. Благодаря высокому объему подаваем для охлаждения воды, обеспечивается оптимальная величина турбулентности потока, необходимая для передачи тепла охлаждающему потоку воздуха, который прокачивается через секции радиатора вентиляторами, с производительностью около 23000М3/ч каждый.
Охладитель работает в «сухом» режиме, т.е. без воды, всякий раз, когда температура атмосферного воздуха ниже требуем температуры производственной воды.

  • Когда жарко, «адиабатическая система» активируется, и дает возможность поддерживать нужную температуру охлаждающей воде, даже если внешняя температура выше.
  • В адиабатической камере впрыск воды из внешних источников активируется автоматически, для того чтобы насытить воздушный поток водой и добиться понижения температуры до того как он попадет в батареи. Используется воздух насыщенный испаряющейся водой для достижения температуры влажного термометра.
  • Количество потребляемой воды контролируется микропроцессором, он распыляет 1,5 л/м на каждый установленный вентилятор и гарантирует полное испарение в потоке воздуха до того как дойдет до оребрений радиатора.
  • Отсутствие прямого контакта между распыленной водой и оребренным радиатором помогает избежать проблему отложения налета на ребрах, позволяя тем самым использование охладителя серии 3DK в любых климатических условиях, даже в тропическом климате, без всяких требований к техническому обслуживанию.
  • Радиатор остается практически сухим и свободным от образования накипи, тем самым поддерживается его эффективность.

Панель управления состоит из усовершенствованной системы микропроцессора и отличается простотой использования. На экране интерфейса постоянно отображается показание температуры крупными цифрами. Параллельно на большим ЖК дисплее отображаются параметры работы, текущее состояние оборудования и сообщения об аварийной ситуации с точным определение причины.

Панелью можно управлять на любом расстоянии от самой системы, что обеспечивает легкодоступный и постоянный контроль за условиями работы и принятие срочных мер в случае тревожного сигнала. Програмное обеспечение позволяет осуществлять контроль за неограниченным количеством вентиляторов. Для повышения надежности системы, PMR снабжена возможностью перехода в ручной режим работ.

Главные функции:

  • контроль за скоростью вентиляторов, в соответствии с температурой окружающей среды и температурой производственной воды с целью применения полученной хладопроизводительности.
  • контроль за функцией испарения в соответствии с температурой окружающей среды и температурой производственной воды.
  • контроль за трехлинейным распределителем для «естественного охлаждения» применительно к водоохладителям.
  • управление насосными станциями:
  • контроль за давлением воды для защиты насосной станции и защиты в случае неисправностей (протечка или поломка труб)
  • автоматический контроль за количеством работающих насосов, зависящих от давления и их чередования для выравнивания наработки.
  • Набор переходников (KFV) (включен в объем поставки)