ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Электросхемы в помощниках. Контроллер больших температур на термопаре K-типа Контроллер больших температуры на термопаре

Термопара - это один из видов температурных датчиков, который может применяться в измерительных устройствах и системах автоматизации. Ей присущи определенные преимущества: дешевизна, высокая точность, широкий по сравнению с термисторами и микросхемами цифровых датчиков температуры диапазон измерения, простота и надежность. Однако выходное напряжение термопары мало и относительно, а схема измерителя на термопаре сложна, так как предъявляются жесткие требования к прецизионному усилению сигнала с термопары и к схеме компенсации. Для разработки таких устройств существуют специализированные микросхемы, интегрирующие схему преобразования и обработки аналогового сигнала. С помощью этих микросхем можно построить достаточно компактный измеритель температуры с термопарой в качестве датчика (Рисунок 1).

Принципы

Википедия определяет принцип действия термопары следующим образом:

Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединенными проводниками имеется контактная разность потенциалов. Если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей потенциалов равна нулю. Когда же стыки находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различной. Помещая спай из металлов с отличными коэффициентами термо-ЭДС в среду с температурой Т1, мы получим напряжение между противоположными контактами, находящимися при другой температуре Т2, которое будет пропорционально разности температур Т1 и Т2 (Рисунок 2).

Рисунок 2.

Существует несколько типов термопар, в зависимости от используемой пары материалов (чистый металл или сплав). В нашем проекте мы используем термопару K-типа (хромель-алюмель), которая часто применяется в промышленных инструментах и приборах. Выходное напряжение термопары K-типа составляет приблизительно 40 мкВ/°С, следовательно, потребуется схема усиления сигнала с небольшим смещением напряжения по входу.

Как упоминалось выше, термо-ЭДС пропорциональна разности температур между холодным и горячим спаем. Это означает, что температура холодного спая должна быть известна для вычисления фактического значения температуры горячего спая. Для этого потребуется схема компенсации холодного спая, которая будет автоматически вводить поправку к измеренной термо-ЭДС (Рисунок 3).

Чтобы получить значение температуры с помощью термопары потребуется аналоговая схема, например прецизионный операционный усилитель и схема компенсации холодного спая. Однако, существует несколько видов специализированных микросхем со встроенным интерфейсом термопары. Эти микросхемы интегрируют указанные выше аналоговые схемы и значительно упрощают проект. В нашем случае мы выбрали микросхему MAX31855 компании . Она содержит аналоговую схему и аналого-цифровой преобразователь, следовательно, на выходе микросхемы мы получим цифровые данные. Перед покупкой микросхемы необходимо заранее определить тип термопары, которая будет использоваться в устройстве.

Основные характеристики микросхемы MAX31855:

  • Диапазон измерения температуры: от -270 °С до +1800 °С;
  • Разрешение: 14 бит, шаг 0.25 °С;
  • Простой SPI-совместимый интерфейс (режим чтения данных);
  • Схема компенсации опорного спая термопары;
  • Схема детектирования замыкания проводов термопары на шину питания и общую шину;
  • Схема детектирования разрыва в измерительной цепи;
  • Исполнения для термопар типов K, J, N, T и E;
  • 8-ми выводной корпус.

Компенсация холодного спая реализуется с помощью интегрированного в микросхему датчика температуры, поэтому одним из важных условий при сборке измерителя является размещение микросхемы непосредственно возле коннектора подключения термопары. Немаловажным условием является также изоляция данного узла от внешнего нагрева. Для подключения мы использовали коннектор, изображенный на Рисунке 4. Можно использовать коннекторы других типов.

Принципиальная схема измерителя температуры изображена на Рисунке 5.

Сердцем прибора является микроконтроллер AVR . Микросхема MAX31855 подключается к микроконтроллеру по интерфейсу SPI.

В качестве источника питания используется батарея типоразмера LR1 с напряжением 1.5 В. Для питания микроконтроллера и микросхемы интерфейса термопары используется схема повышающего DC/DC преобразователя, выполненного на микросхеме серии XC9111 , обеспечивающего выходное напряжение 3.0 В. Микроконтроллер осуществляет управление питанием и отслеживает напряжение батареи.

Так как для питания используется элемент питания 1.5 В, для отображения данных оптимально использовать сегментный статический ЖК индикатор TWV1302W, который применяется в цифровых устройствах измерения температуры (Рисунок 6). Рабочее напряжение этого индикатора 3 В. При использовании индикатора с рабочим напряжением 5 В потребуется дополнительная схема преобразователя напряжения (Рисунок 7). Функции управления индикатором выполняет микроконтроллер. При таком решении потребляемый устройством ток составит 4 мА, а батарея прослужит, как минимум, 100 часов.

На МК. Сердцем его является микроконтроллер PIC16F628A. В схеме термометра используется 4-х значный или 2+2 светодиодный индикатор с общим анодом. Датчик температуры используется типа DS18B20, и в моем случае показания датчика отображаются с точностью 0,5*С. Термометр имеет пределы измерения теемпературы от -55 до +125*С, что достаточно на все случаи жизни. Для питания термометра была использована обычная зарядка от мобилы на ИП с транзистором 13001.

Принципиальная схема термометра на микроконтроллере PIC16F628A:

Для прошивки PIC16F628A я использовал программу ProgCode, установив её на компьютер и собрав программатор ProgCode по известной схеме:

Обозначение выводов используемого микроконтроллера и цоколёвка некоторых других аналогичных МК:

Программа ProgCode и инструкции с фотографиями пошаговой прошивки находятся в архиве на форуме. Там же и все необходимые для этой схемы файлы. В программе открываем и нажимаем на кнопку "записать всё”. В моем изготовленном устройстве, как видно из фотографий, собрано 2 термометра сразу в одном корпусе, верхний индикатор показывает температуру дома, нижний - на улице. Размещается он в любом месте помещения и соединяется с датчиком гибким проводом в экране. Материал предоставил ansel73. Прошивку редактировал: [)еНиС

Прибор (см. рисунок) можно использовать для автоматического контроля измерения температуры в теплицах и овощехранилищах, сушильных шкафах и электропечах, а также в биомедицинских целях. Он обеспечивает высокую чувствительность и помехоустойчивость, удобное управление режимами работы. Наличие гальванической развязки по цепям питания и управления делают его надежным и безопасным в работе. Оптронная система синхронизации с частотой сети позволяет избежать коммутационных помех.

Прибор состоит из двух основных функциональных узлов: электронного терморегулятора и цифрового измерителя. Управляющие сигналы в терморегуляторе формируются на основе сравнения напряжения, получаемого от термопары (ТП), с опорным напряжением.

Основные технические характеристики прибора: диапазон контролируемых температур от 0 до 200 или до 1200 °С в зависимости от используемого датчика. Погрешность термометра не более 1,5% от верхнего предела измерения; максимальная точность поддержания температуры до 0,05°С. Следует учитывать, что система с использованием ТП является дифференциальной, т.е. напряжение на ее выходе пропорционально разности температур между соединенными и свободными концами термопары Поэтому если при высоких контролируемых температурах влияние колебаний температуры окружающей среды на выходное напряжение ТП незначительно, и его можно не учитывать, то для контролируемых температур менее 200°С необходимо применять дополнительные меры по компенсации изменения температуры свободных концов термопары. Максимальная частота коммутации нагрузки 12,5 Гц, ток нагрузки до 0,1A, а при использовании дополнительного симисторного ключа до 80 А при напряжении ~220 В, габаритные размеры 120х75х160 мм.

Переменное напряжение 24 В с частотой сети (f), снимаемое с вторичной обмотки трансформатора Т1, через ограничивающий резистор R21 поступает на транзисторный оптрон U1, на выводе 5 которого образуются синхронизирующие импульсы, фронт которых по времени практически совпадает с моментами перехода сетевого напряжения через нуль. Далее эти импульсы поступают на цифровую часть прибора, которая на основе сигналов, приходящих с аналого вой части, формирует соответствующие управляющие сигналы.

Аналоговая часть прибора реализована на четырех ОУ микросхемы К1401УД2. Напряжение, снимаемое с ТП, усиливается ОУ DA1.1 и поступает на входы ОУ DA1.2...DA1.4, выполняющие роль компараторов. Опорные напряжения, определяющие пороги их переключения, задаются резисторами R8, R9, R11, R12, R14-R16. Благодаря отсутствию обратных связей в ОУ (DA 1.2-DA 1.4) и большому коэффициенту их усиления, достигнута очень высокая чувствительность прибора. Резистор R12 служит для установки верхнего температурного порога, при котором нагрузка отключается, а резистор R9 предназначен для задания разницы температуры (Dt) между верхним и нижним порогами переключения терморегулятора. Когда регулировка Dt не требуется, для обеспечения максимальной точности поддержания температуры вместо резистора R9 рекомендуется установить перемычку, резистор R8 при этом можно исключить из схемы. Цепи на элементах VD1-VD3, С1-СЗ, R10 R13, R17 служат для предотвращения прохождения отрицательного напряжения на входы цифровых микросхем и устранения помех. Синхронизация триггеров DD1.2, DD2.1, DD2.2 осуществляется импульсами, формируемыми счетчиком DD3. Логику формирования управляющих сигналов в устройстве поясняет таблица.

В установившемся режиме работы, когда температура на объекте соответствует заданной, индикатор HL2 должен быть постоянно включен, а индикаторы HL1, HL3 выключены. Об отклонениях температуры, сигнализирует включение индикаторов HL1, HL3. Для повышения наглядности они работают в мигающем режиме. Необходимые для управления этими индикаторами импульсы формируются на выходах 5 и 12 счетчика dD3. С вывода 9 триггера DD1.2 через эмиттерный повторитель на транзисторе VT1 сигнал идет на цепи индикации и управления нагрузкой. Принудительное отключение нагрузки осуществляется выключателем SA1, размыкающим эти цепи. Для управления нагрузкой используется динисторный оптрон U2, включенный в диагональ моста VD2. Максимальный коммутируемый ток в таком варианте составляет 0,1 A. Установив дополнительно семи-стор VS1 и соответственно изменив схему включения нагрузки, этот ток можно увеличить до 80 А.

Функции измерения температуры, а также отображение ее значения реализованы на основе микросхемы К572ПВ2 (аналог ILC7107) . Выбор этого АЦП обусловлен возможностью непосредственного подключения к нему светодиодных знакосинтезирующих индикаторов. При использовании жКи можно применить К572ПВ5 . При отжатой кнопке SВ1 на АЦП поступает напряжение с выхода ОУ DA1.1, обеспечивая режим измерения температуры. При нажатии на кнопку SВ1 измеряется напряжение на переменном резисторе R12, соответствующее температуре установленного порога регулирования.

Детали. В устройстве использованы постоянные резисторы типа МЛТ, подстроенные СП5-2 (R9, R15), переменный СПЗ-45 (R12), конденсаторы типа К73-17 (С11-С13), КТ1 (С10), К53-1 (С4-С7). Оптрон АОУЮ3В можно заменить АОУ115В. Индикаторы HG1-HG4 типа SA08-11HWA можно заменить отечественными КЛЦ402.

Настройка заключается в установке резистором R3 правильных показаний термометра при минимальной температуре, а резистором R4 - при максимальной. Для устранения взаимного влияния сопротивлений резисторов такую регулировку следует повторить несколько раз. Правильно собранный прибор в дальнейшей настройке не нуждается, необходимо лишь установить резистором R9 требуемое значение Dt, а резистором R15 - допустимый предел превышения температуры до включения аварийной сигнализации.

В качестве датчика температуры можно использовать полупроводниковый диод. Основными преимуществами последнего являются низкая стоимость и намного меньшая инерционность по сравнению с интегральным датчиком, точность измерений достигает 0,2°С в диапазоне температур от -50 до +125°С. Питание низковольтной части устройства осуществляется от двуполярного стабилизатора напряжением ±5 В, собранного на элементах DA2-DA3, С4-С9. Для управления оптроном U1 используется напряжение +12 В. Запрещается включение прибора без наличия заземления. Прибор имеет высокую помехозащищенность, допускающую значительную протяженность линии, соединяющей его с датчиком. Однако для обеспечения надежной работы прибора не следует прокладывать ее вблизи силовых проводов, несущих высокочастотные и импульсные токи.

Литература:

1. Ануфриев Л. Мультиметр на БИС// Радио.- 1986. №4.- C. 34-38.

2. Суетин. В. Бытовой цифровой термометр// Радио.- 1991. №10. C.28-31.

3. Гутников В. С. Интегральная электроника в измерительных устройствах. - 2-е изд. перераб. и доп. - Л.: Энергоато-миздат, 1988.

Как то попался мне на глаза телефон Nokia 3310 - внук бегал с ним игрался, естественно давно не рабочий. И тут вспомнил, что где-то видел схемы на дисплей от него. Погуглил, выдало несколько ссылочек, на устройства, мне понравился градусник, порывшись в коробочках нашел нашел термодатчик DS18B20, ну и решил собрать по этой схеме, тем более деталей в ней минимум. ЖК дисплей поддерживает два варианта работы: нормальный (на светлом фоне) и противоположный (на темном фоне). Менять режимы можно перемычкой JP1. Ниже смотрим саму схему термометра на микроконтроллере PIC12F629:

Технические параметры устройства:

* Voltage ....................... 3 - 3.3 В
* Мин. шаг темп............. 0,1 " C
* Погрешность................... +/- 0,5 " C Темп.
* Обновляется каждые.... 1,2 sec.
* Amperage ................. 0,2 mA - 0,8 mA
* Диапазон измеряемых температур … от -55 до 125°C

Приступаем к сборке, сначала аккуратно извлек дисплей, стекло не стал выкидывать, решил его тоже приспособить.


Протравил плату, в архиве есть рисунок для технологии ЛУТ. Прошил и просто спаял. можно скачать тут. Сначала датчик подключил через разъем, но он иногда отключался, поэтому его просто припаял.


Самое трудное было припаять проводки к дисплею, на это ушло часа 2 сначала использовал компьютерный шлейф 40 пиновый - очень тяжело и не удобно, так что отказался от него и взял 80 пиновый шлейф, распустил, и все удачно получилось за 5 минут. Подал питание и... термометр заработал.



После небольших манипуляций с дрелью и напильником получилось такое окошко.


Осталось закрепить там родное стекло, даже не стекло, а пластик, но со свойством увеличения. Далее силиконовым пистолетом делаем точечную сварку - тут главное не перегреть дисплей. Так как аккумулятора на 3.6 вольта не было, поставил пока три слабенькие батарейки, они тоже дают 3.3 вольта. Со временем поставлю аккумулятор.


А вот весь термометр на микроконтроллере в сборе:


Работает без глюков и меряет температуру с точностью, не хуже чем у промышленных аналогов. Поэтому данную схему можно смело рекомендовать для повторения. Автор статьи: Ear.

Но можно собрать самому в два раза дешевле.
Кому интересно - добро пожаловать под кат.

Начнем по порядку.
Термопара… как термопара. Метр ровно, К типа, 0-800C

Можно врезать в корпус, имеется резьбовая часть, которая вращается свободно. Диаметр 5,8мм, шаг - 0,9~1.0мм, похоже М6 x 1,0 мм. Под ключ на 10


Это все хорошо, дальше что делать? Нужно преобразовать сигнал (термоэдс) в цифровой или аналоговый сигнал, чтоб читать ардуиной. В этом нам поможет . Это преобразователь сигнала термопары K-типа в цифру, имеет интерфейс, что нас устраивает.
А вот и наш герой - ($4.20)


Стоил $4.10, но того лота больше нет (продавец тот же).

Подключать будем к ардуине, можно взять простенькую ($5.25, можно найти дешевле, здесь Вы видите именно эту)


Данные будем писать на карту памяти (и заодно слать в порт) с помощью $1.25.


Интерфейс, тоже, кстати, SPI. Только не все карточки его поддерживают. Не завелось - попробуйте сначала другую.
В теории все линии SPI устройств (MOSI или SI, MISO или SO, SCLK или SCK), кроме CS (CS или SS - выбор микросхемы), можно подключить к одним контактам ардуины, но тогда MAX6675 работает неадекватно. Поэтому я все разнес по разным пинам.
В основу скетча лег пример по работе с картами памяти с .
Библиотека и скетч для MAX6675 . Схема подключения MAX6675:

#include
#include

Int units = 1; // Units to readout temp (0 = F, 1 = C)
float error = 0.0; // Temperature compensation error
float temp_out = 0.0; // Temperature output varible

MAX6675 temp0(9,8,7,units,error);

Void setup()
{
Serial.begin(9600);
Serial.print(«Initializing SD card...»);

PinMode(10, OUTPUT);
if (!SD.begin(10)) {
Serial.println(«initialization failed!»);
return;
}
Serial.println(«initialization done.»);

// Проверяем, существует ли на карте файл data.csv, если существует, то удаляем его.
if(SD.exists(«temp.csv»)) {
SD.remove(«temp.csv»);
}
// открываем файл. заметьте, что только один файл может быть открыт за раз,
// поэтому вы должны закрыть этот, чтобы открыть другой.
myFile = SD.open(«temp.csv», FILE_WRITE); // открыть на запись


if (myFile) {
Serial.print(«Writing to temp.csv...»);
// закрываем файл:
myFile.close();
Serial.println(«done.»);
}
else {


}

}
void loop()
{

Temp_out = temp0.read_temp(5); // Read the temp 5 times and return the average value to the var

Time = time + 1; // Увеличиваем время на 1

MyFile = SD.open(«temp.csv», FILE_WRITE);

// если файл нормально открылся, запишем в него:
if (myFile) {
// записываем время
myFile.print(time);
Serial.print(time);
// добавляем точку с запятой
myFile.print(";");
Serial.print(";");
// пишем температуру и перевод строки
myFile.println(temp_out);
Serial.println(temp_out);
// закрываем файл:
myFile.close();
}
else {
// а если он не открылся, то печатаем сообщение об ошибке:
Serial.println(«error opening temp.csv»);
}
delay(1000); // Ждем секунду
}


Скачать: