ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Мощный шим стабилизатор. Импульсный стабилизатор напряжения — принцип работы стабилизатора. Что такое широтно-импульсная модуляция

Рис. 40

Рис. 39

Рис. 38

Рис. 37

Примечание - подробнее о самой микросхеме и принципе ее работы показа-но далее в параграфе 2.4.2. - ШИМ регулятор на ИС TL494.

Импульсные стабилизаторы напряжения на ИС TL494.

Пилообразное напряжение часто получают от отдельного устройства – генератора пилообразного напряжения (ГПН).

Частота напряжения пилообразной формы определяется RC цепочкой и обычно f гпн = const , но, в случае необходимости, изменяя параметры RC можно устанавливать (регулировать) необходимую частоту.

Известно, что частота переключения коммутирующего устройства – транзисторы VT 2, VT 3 в ИСН с ШИМ постоянна (она задается ГПН). Под влиянием дестабилизирующих факторов изменяется напряжение на внешнем резисторе R 9 и, соответственно, на выходе дифференциального усилителя U упт, что приводит к изменению длительности открытого состояния транзисторов VT 2, VT 3 регулятора, а напряжение на выходе импульсного стабилизатора остается неизменным.

3.7.3 ШИМ-контроллеры серии TL494

В настоящее время на рынке широко представлены микросхемы (отечественные и импортные), которые реализуют различный набор функций ШИМ-управления для конкретных задач. Хорошо себя зарекомендовали ШИМ-контроллеры серии TL494 (отечественный аналог КР1114ЕУ4). Их подробное описание приведено в . Данные микросхемы обеспечивают расширенные возможности при разработке ИВЭП и реализуют полный набор функций ШИМ-управления. Микросхема осуществляет формирование опор-ного напряжения, усиление сигнала ошибки, формирование пилообразного напряжения, ШИМ-модуляцию, формирование двухтактного выхода, защиту от сквозных токов и перегрузок, внешнюю синхронизацию, широкий диапазон регулировки, обеспечивает мягкий запуск и возможность внешнего включения.

основные параметры и характеристики микросхемы TL494:

· напряжение питания Uсс – 7…40 В;

· напряжение на коллекторах закрытых ключевых транзисторов не более 40 В;

· ток выходных ключевых транзисторов – 250 мА;

· опорное напряжение – 5 В ± 5%;

· общая мощность рассеивания в непрерывном режиме (корпусDIP-16.Т а <25 ºС) – не более 1000 мВт;

· рабочий диапазон температур окружающей среды:

· с суффиксом L – от −25…+85 ºС;

· с суффиксом С – от 0…+70 ºС.

· ток через вывод обратной связи – не более 0,3 мА;

· емкость времязадающего конденсатора Ст – 0,047…10000 нФ;

· сопротивление времязадающего резистора – 1,8..500 кОм;

· частота генератора – 1…300 кГц;

· ток потребления микросхемы – не более 20 мА;


· фронт импульса выходного тока – не более 200 нс;

· спад импульса выходного тока – не более 100 нс.

Кроме того, независимые выходные формирователи микросхемы на транзисторах обеспечивают возможность работы выходного каскада по схеме с общим эмиттером или по схеме эмиттерного повторителя.

3.1.1.Принципиальная схема импульсного понижающего
стабилизатора на ИС TL494

В предлагаемом на рис. 37 стабилизаторе максимальное входное напряжение составляет 30 В, оно ограничено максимально допустимым напряжением сток-исток р-канального полевого транзистора VT 1 RFP60P03 фирмы Mitsubishi Electric . Резистор R 3 и конденсатор С 6 задают частоту внутреннего генератора пилообразного напряжения, она определяется по формуле

На рис. 37 указано: VD 1-КД212А; VD 2-2Д2998Б; 1-RFP60PO3; C 1, C2-2200 мк×40 В; C 3-10 мк×63В; C 4-0,1мк; C 5-1000 мк×25В; C 6-4700; C 7-0,1 мк; FU 1-MF R400; R 1-200 Ом, 0,125 Вт; R 2-510 Ом, 0,5 Вт; R 3-30 кОм, 0,125 Вт; R 4-1 М, 0,125 Вт; R 5-47 кОм, 0,125 Вт; R 6-4,7 кОм, 0,125 Вт; R 7-4,7 кОм; R 8-5,6 кОм, 0,125 Вт; R 9-1 кОм, 0,125 Вт; L 1-80 мкГн; I-6 А; U вх =24 В; U вых =0…11 В.

С источника опорного напряжения (вывод 14) через резистивный делитель R 6, R 7 на инвертирующий вход усилителя ошибки № 1 (вывод 2) подается часть образцового напряжения. Сигнал обратной связи через делитель R 8, R 9 подают на не инвертирующий вход усилителя ошибки (вывод 1) микросхемы. Выходное напряжение регулируется резистором R 7. Резистор R 5 и конденсатор С 7 осуществляют частотную коррекцию усилителя ошибки.

Следует отметить, что независимые выходные формирователи микросхемы обеспечивают работу выходного каскада как в двухтактном, так и в однотактном режимах. В стабилизаторе выходной формирователь микросхемы включен в однотактном режиме. Для этого вывод 13 соединен с общим проводом. Два выходных транзистора (коллекторы – выводы 8, 11; соответственно эмиттеры – выводы 9, 10) включены по схеме с общим эмиттером и работают параллельно. При этом выходная частота равна частоте генератора. Выходной каскад микросхемы через резистивный делитель R 1, R 2 управляет ключевым элементом КЭ стабилизатора – полевым транзистором VT 1. В цепи питания микросхемы (вывод 12). Для подавления различных высокочастотных помех и более устойчивой работы стабилизатора в целом включен LC -фильтр на элементах L 1, C 3, C 4. Как видно из принципиальной схемы стабилизатора, при применении микросхемы TL494 требуется сравнительное небольшое число внешних элементов.

Для защиты стабилизатора от перегрузки по току применен самовосстанавливающийся предохранитель FU 1 MF-R400 фирмы Bourns. Принцип работы подобных предохранителей основан на свойстве резко увеличивать свое сопротивление при превышении определенного порогового значения тока или температуры окружающей среды и автоматически восстанавливать свои свойства при устранении этих причин. Ниже приведены технические характеристики вышеуказанного предохранителя:

· максимально рабочее напряжение – 30 В;

· максимальный ток, которые не приводит к изменению параметров предохранителя – 4 А;

· ток, который приводит к скачку сопротивления – 8 А;

· диапазон рабочей температуры – от −40 до +85 ºС.

Уменьшить коммутационные потери и повысить КПД стабилизатора удалось благодаря использованию диода Шоттки (VD 2) КД2998Б с параметрами:

· постоянное прямое напряжение – 0,54 В;

· средний прямой ток – 30 А;

· диапазон частот без снижения электрических параметров–10..200 кГц;

· импульсное обратное напряжение – 30 В.

Основные технические характеристики понижающего стабилизатора (рис.37)

· Входное напряжение – 24 В;

· Выходное напряжение – 0…11 В;

· Максимальный ток нагрузки – 6 А;

· Амплитуда пульсаций выходного напряжения – не более 100 мВ;

· Нестабильность выходного при изменении тока нагрузки и температуры окружающей среды – не более 1%;

· Среднее значение КПД при максимальном токе нагрузки во всем интервале выходного напряжения – порядка 90 %;

Экспериментально было установлено, что стабилизатор имеет максимальный КПД (≈90 %) на частоте 12 кГц, но при выходной мощности порядка 40 Вт наблюдается едва заметный свист . Свист пропадает, если увеличить частоту преобразования до 20 кГц (при снижении КПД на 2…3 %). КПД при выходной мощности до 10 Вт (U вых = 10 В) достигает 93 %.

Дроссель L2 намотан на двух сложенных вместе кольцевых магнитопроводах МП-140 К24×13×6,5 и содержит 45 витков провода ПЭТВ-2 диаметром 1,1 мм, уложенных равномерно в два слоя по всему периметру кольца. Между слоями следует проложить два слоя лакоткани ЛШМС-105-0,06 ГОСТ 2214-78. Индуктивность дросселя – 220 мкГн. Резисторы – С2-33Н. Конденсаторы С 1, С 2, С 3, С 5 – К50-35, С 4, С 6, С 7 – К10-17. Переменные резисторы – СП5-3 или СП5-2ВА. Микросхему TL494CN можно заменить на TL494LN или КР1114ЕУ4. Дроссель L 1 – ДМ-0,1 индуктивностью 80 мкГн. Самовосстанавливающийся предохранитель серии MF-R можно подобрать для каждого конкретного случая. Диод VD 2 можно заменить любым другим диодом Шоттки с параметрами не хуже вышеуказанных, например 20TQ045.

В стабилизаторе узел защиты от перегрузки по току можно выполнить по-другому. В TL494 есть усилитель ошибки № 2 (инвертирующий вход/выход 15, не инвертирующий вход/выход 16). Выходы обоих усилителей ошибки имеют активный высокий уровень и объединены по ИЛИ на не инвертирующем входе ШИМ-компаратора. В такой конфигурации усилитель, требующий минимального времени для включения выхода, является доминирующим в петле усиления.

Фрагмент схемы стабилизатора с узлом защиты от перегрузки по току приведен на рис. 38 .

Параллельные резисторы R 12-R 14 выполняющие роль датчика тока, включены последовательно с нагрузкой. Напряжение с датчика тока подается на не инвертирующий вход (вывод 16) усилителя ошибки № 2. Пороговое значение тока (напряжение на инвертирующем входе усилителя, вывод 15) в нагрузке задается делителем R 10, R 11.

На рис. 38 указано: VD 2-2Д2998Б; C 5-1000 мк×25В; C 6-4700; C 7-0,1 мк; R 3-30 кОм, 0,125 Вт; R 4-1 М, 0,125 Вт; R 5-47 кОм, 0,125 Вт; R 6-4,7 кОм, 0,125 Вт; R 7-4,7 кОм; R 8-5,6 кОм, 0,125 Вт; R 9-1 кОм, 0,125 Вт; R 10-4,7 кОм, 0,125 Вт; R 11-270 Ом; R 12, R 13, R 14-0,1 кОм, 1 Вт; L 1-80 мкГн; I-6 А; U вых = 0…11 В.

Как только ток в нагрузке превысит установленное пороговое значение и усилитель ошибки №2 микросхемы будет доминирующим в петле управления, стабилизатор начнет работать в режиме стабилизации тока. Если ток нагрузки будет меньше порогового значения, стабилизатор вновь перейдет в режим стабилизации напряжения. Для уменьшения потерь мощности датчик тока выполнен с минимальным сопротивление 0,03 Ом: при максимальном токе нагрузке 6 А рассеиваемая мощность на датчике
составляет всего 1,08 Вт. Резисторы R 12...R 14 – типа С5-16МВ 1 Вт, 0,1 Ом ± 1%. Резистор R 11 – СП5-3 или СП5-2ВА. При необходимости для уменьшения потерь можно еще уменьшить сопротивление датчика тока.

Стабилизатор выполнен на плате с размерами 55×55 мм. При монтаже целесообразно разделить общий провод силовой части стабилизатора и общий провод микросхемы и соединить их у выхода стабилизатора, а также минимизировать длину проводников (особенно силовой части).

Транзистор устанавливают на радиатор с площадью эффективной поверхности не менее 110 см 2 . В налаживании стабилизатор при правильном монтаже не нуждается. В стабилизаторе с узлом защиты от перегрузки по току (рис. 38) необходимо выставить напряжение на выводе 15 микросхемы, которое вычисляется по формуле: U 15 = I×R, где I – максимальный ток нагрузки; R – сопротивление датчика тока.

Вначале без нагрузки резистором R 11 необходимо выставить требуемое напряжение U для максимального тока нагрузки (для тока I пор = 8 А, U = 0,24 В). Первое включение лучше сделать при нагрузке 0,2…0,4 А. Затем медленно увеличить выходное напряжение до максимального значения и далее, увеличивая ток нагрузки, проверить переход стабилизатора в режим стабилизации тока.

Вместо транзистора RFP60P03, можно применить более дешевый RFP10P03, но применение более дешевой элементной базы может привести к ухудшению технических характеристик стабилизатора.

3.1.2.Принципиальная схема импульсного повышающего
стабилизатора на ИС TL494

В некоторых случаях необходимо, чтобы выходное напряжение стабилизатора было выше входного. На рис. 39 приведена структурная схема импульсного параллельного стабилизатора повышающего типа.

В данном импульсном стабилизаторе при открытом ключевом элементе КЭ ток от источника U вх протекает через дроссель L 1, запасая в нем энергию. Диод VD 1 при этом закрыт. Ток в нагрузку в этот промежуток времени поступает только от конденсатора С 1 .

На рис. 39 указано: VD 1-КД212А; VD 2-2Д2998Б; 1-IRFP540; C 1, C2-2200 мк×40 В;C 3-10 мк×63В; C 4-0,1мк; C 5, C 6-3300 мк×63 В; C 7-4700; С 8-0,1 мк; С 9-1000 мк×25 В; FU 1-MF R400; R 1-1 кОм, 0,25 Вт; R 2-750 Ом, 0,25 Вт; R 3-30 кОм, 0,125 Вт; R 4-1 М, 0,125 Вт; R 5-47 кОм, 0,125 Вт; R 6-4,7 кОм, 0,125 Вт; R 7-4,7 кОм; R 8-150 кОм, 0,125 Вт; R 9-4,7 кОм, 0,125 Вт; L 1-80 мкГн; I-1,4 А; U вх =24 В; U вых =26,5…50 В.

В следующий момент, когда КЭ закрывается, энергия дросселя L 1 отдается в нагрузку. При этом выходное напряжение будет больше входного. В отличие от понижающего стабилизатора (рис. 38 ) здесь дроссель не является элементом фильтра, а выходного напряжение становится больше входного на величину, которая определяется индуктивностью дросселя L 1 и скважностью работы ключевого элемента КЭ.

В стабилизаторе на рис. 39 применены, в основном, те же радиоэлементы, что и в ранее рассмотренном.

Основные технические характеристики повышающего стабилизатора:

· Входное напряжение – 24 В;

· Выходное напряжение – 26,5…50 В;

· Максимальный ток нагрузки (при U вых = 50 В) – 1,4 А;

· Амплитуда пульсаций выходного напряжения – не более 200 мВ;

· Нестабильность выходного при изменении тока нагрузки и температуры окружающей среды – 1,5 %;

· Среднее значение КПД при максимальном токе нагрузки во всем интервале выходного напряжения – порядка 9,2 %;

· Частота преобразования – 15 кГц;

· Диапазон рабочей температуры – от −25 до +85 ºС;

· Амплитуда пульсаций выходного напряжения стабилизатора при максимальной нагрузке – порядка 200 мВ.

Уменьшить пульсации можно, увеличив емкость выходного фильтра. Для более «мягкого» запуска между общим проводом и не инвертирующим входом усилителя ошибки № 1 (вывод 1) включен конденсатор С 9. Для защиты стабилизатора от перегрузки по току можно применить функциональный узел, приведенный на рис. 38.

Дроссель L 2 такой же, как и в схеме понижающего стабилизатора, VT 1 – n- канальный полевой транзистор IRF540 с параметрами: U си = 100 В, I c и =28 А, R си = 0,077 Ом (максимальные значения). Резисторы – С2-33Н. Конденсаторы С 1, С 2, С 3, С 5, С 6, С 8, С 9 – К50-35; С 4, С 7, С 8 – К10-17. Переменные резисторы – СП5-3 или СП5-2ВА. Транзистор VT 1 следует установить на радиатор с площадью эффективной поверхности не менее 100 см 2 . Можно применить более дешевый n-канальный полевой транзистор, конечно, с некоторым ухудшением технических характеристик стабилиза-тора. Первое включение лучше сделать при небольшой нагрузке 0,1…0,2 А и минимальном выходном напряжении, затем медленно увеличивать выходное напряжение и ток нагрузки до максимальных значений.

Если повышающий и понижающий стабилизаторы будут работать от одного источника напряжения, то их частоту преобразования можно засинхронизировать. В приведена схема синхронизации двух микросхем TL494. Для этого в ведомом стабилизаторе нужно удалить времязадающие резисторы и конденсатор и замкнуть выводы 6 и 14 микросхемы, а выводы 5 микросхем обоих стабилизаторов соединить между собой.

В стабилизаторе повышающего типа дроссель L 2 не участвует в сглаживании пульсации выходного постоянного напряжения. В стабилиза-торах повышающего типа для качественной фильтрации выходного постоянного напряжения необходимо применять выходные фильтры с достаточно большими значениями L и С . Это приводит к увеличению массы и габаритов фильтра и устройства в целом. Поэтому удельная мощность понижающего стабилизатора больше, чем повышающего.

3.1.3. Принципиальная схема импульсного
инвертирующего стабилизатора на ИС TL494

Принципиальная схема импульсного инвертирующего стабилизатора приведена на рис. 40. Этот ИСН выполнен по схеме, приведенной в главе 2, §2.2.3.

Также, как и в повышающем стабилизаторе, дроссель при открытом КЭ накапливает энергию, а при закрытом – отдает ее в нагрузку, однако за счет другого порядка соединения элементов стабилизатор обладает свойством инвертирования полярности выходного напряжения относительно входного напряжения.

На рис. 40 указано: VD 1-КД212А; VD 2-2Д2998Б; 1-RFP60PO3; C 1, C2-2200 мк×40 В;C 3-10 мк×63В; C 4-0,1мк; C 5-1000 мк×25В; C 6-4700; C 7-220 мк×40 В; С 8-0,1 мк;FU 1-MF R400; R 1-200 Ом, 0,125 Вт; R 2-510 Ом, 0,5 Вт; R 3-1 кОм, 0,125 Вт; R 4-4,7 кОм, 0,125 Вт; R 5-30 кОм, 0,125 Вт; R 6-1 МОм, 0,125 Вт; R 7-47 кОм; R 8-1 кОм, 0,125 Вт; R 9-10 кОм, 0,125 Вт; R 10-1 кОм, 0,125 Вт; R 11-5,6 кОм, 0,125 Вт; L 1-80 мкГн; I-4,5 А;U вх =24 В; U вых =0…11 В.

В инвертирующем стабилизаторе использованы, в основном, те же электронные компоненты, что и в ранее описанных.

Основные технические характеристики инвертирующего стабилизатора:

· Входное напряжение – 24 В;

· Выходное напряжение – 11 В;

· Максимальный ток нагрузки – 4,5 А;

· Амплитуда пульсаций выходного напряжения – не более 150 мВ;

· Нестабильность выходного при изменении тока нагрузки и температуры окружающей среды – 15 %;

· Среднее значение КПД при максимальном токе нагрузки во всем интервале выходного напряжения – 80%;

· Частота преобразования – 15 кГц;

· Диапазон рабочей температуры – от −25 до +85 ºС.

Для того, чтобы исключить бросок входного тока, особенно при работе на большую нагрузку, в стабилизаторе реализован «мягкий» запуск за счет введения R 3 и С 5.

Транзистор VT 1 следует установить на радиатор с площадью эффек-тивной поверхности не менее 140 см 2 . Диод VD 2 также устанавливается на радиатор с площадью эффективной поверхности не мене 10 см 2 .

Входное напряжение стабилизаторов можно уменьшить или увеличить, если учесть все вышеизложенные требования к каждому стабилизатору, но при этом ток нужно вновь рассчитать делитель R 1, R 2, чтобы ток делителя и напряжение исток-затвор транзистораVT 1 не изменились.?????

Микросхема импульсного управления КР142ЕП1 обеспечивает работу ИСН в основном в релейном двухпозиционном режиме, но в ИС предусмотрена также возможность для создания стабилизатора напряжения с широтно-импульсной модуляцией.

Например, если по тем или иным причинам требуется, чтобы работа порогового устройства была синхронизирована с частотой какого-либо внешнего устройства, то его синхронизирующий сигнал подают на выв. 14 и 15 ИС. Часто в качестве подобного устройства используют генератор прямоугольных импульсов - задающий генератор. Переменное напряжение прямоугольной формы такого генератора с помощью дифференцирующей RC цепочки преобразуется в пилообразное напряжение U пил. В качестве резистора в этом случае используется R 10 микросхемы, а внешний конденсатор применяется небольшой емкости.

В качестве узла ввода этого сигнала используются диоды VD 3...VD 6, включенные между дифференциальным усилителем и триггером Шмитта. Таким образом, на резисторе R 10 осуществляется сравнение двух напряжений – первое пропорционально изменению напряжения на нагрузке(как и в ИСН с РЭ) и снимается оно с коллектора VT 11 дифференциального усилителя постоянного тока U упт, а второе –напряжение пилообразной формы U пил. В результате сравнения этих напряжений выделяется сигнал рассогласования, который подается на инвертирующий каскад VT 7.

Напряжение пилообразной формы должно иметь размах, достаточный для перевода VT 7 в состояние насыщения. Последний в открытом состоянии работает в режиме, близком к насыщению. Задержка моментов времени, в которые VT 7 выходит из насыщения, по отношению к переднему фронту пилообразного напряжения зависит от того, насколько открыты транзисторы VT 7, VT 8. Если транзисторы почти заперты, а среднее напряжение между их базой и эмиттером, задаваемое потенциалом коллектора VT 8, мало, то оно сравняется с линейно уменьшающимся напряжением на выходе выпрямителя только в конце такта.

При возрастании потенциала на коллекторе VT 11(т.е. при увеличении напряжения на нагрузке) растет и напряжение U упт. Такому напряжению соответствует большая пауза между импульсами напряжения (меньшая длительность импульсов напряжения), снимаемыми с общей эмиттерной нагрузки транзисторов VT 7, VT 8 - R 9(U Б VT 6) микросхемы.

Транзисторы VT 6, VT 5, VT 4являются усилителями импульсов, снимаемых с резистора R 9. Усиленные импульсы с коллектора VT 4 через внешний делитель напряжения (R 6, R 3) подаются на базу VT 3, являющегося одним из транзисторов ключа, входящего в состав ИС. Этот ключ (VT 2, VT 3) управляет в данной схеме ИСН внешним силовым ключом, выполненным также в виде составного транзистора (VT 2, VT 3). Таким образом, при увеличении, например, напряжения питания на входе ИСН напряжение U н = (t и /T)U п на нагрузке останется неизменным так как уменьшилось время открытого состояния регулирующего транзистора силовой части.


За последние 10-20 лет количество бытовой электроники многократно выросло. Появилось огромное разнообразие электронных компонентов и готовых модулей. Возросли и требования к питанию, для многих требуется стабилизированное напряжение или стабильный ток.

Драйвер чаще всего используется как стабилизатор тока для светодиодов и зарядки автомобильных аккумуляторов. Такой источник теперь есть в каждой светодиодном прожекторе, лампе или светильнике. Рассмотрим все варианты стабилизации, начиная от старых и простых до самых эффективных и современных. Еще они называются , led driver.


  • 1. Типы стабилизаторов
  • 2. Популярные модели
  • 3. Стабилизатор для светодиодов
  • 4. Драйвер на 220 В
  • 5. Стабилизатор тока, схема
  • 6. LM317
  • 7. Регулируемый стабилизатор тока
  • 8. Цены в Китае

Типы стабилизаторов

Импульсные регулируемые постоянного тока

15 лет назад на первом курсе я сдавал зачёты по предмету «Источники питания» для радиоэлектронной аппаратуры. Начиная с тех пор и до сегодняшнего времени, самым народным и популярным остаётся микросхема LM317 и её аналоги, которая относится к классу линейных стабилизаторов.

На данный момент есть несколько видов стабилизаторов напряжения и тока:

  1. линейные до 10А и входным напряжением до 40В;
  2. импульсные с высоким входным напряжением, понижающие;
  3. импульсные с низким входным напряжением, повышающие.

На импульсном ШИМ контроллере обычно от 3 до 7 ампер по характеристикам. В реальности зависит от системы охлаждения и КПД в конкретном режиме. Повышающий из низкого входного напряжения на выходе делает более высокое. Такой вариант используется для от блоков питания с малым количеством вольт. Например в автомобиле, когда из 12В надо сделать 19В или 45В. С понижающим проще, высокое снижается до нужного уровня.

Про все способы питания светодиодов читайте в статье « к 12 и 220В». Отдельно описаны схемы подключения от простейших за 20 руб до полноценных блоков с хорошим функционалом.

По функционалу они делятся на специализированные и универсальные. Универсальные модули обычно имеют 2 переменных сопротивления, для настройки Вольт и Ампер на выходе. Специализированные чаще всего не имеют построечных элементов и значения на выходе фиксированы. Среди специализированных, распространены стабилизаторы тока для светодиодов, схемы в большом количестве есть в интернете.

Популярные модели

Lm2596

Среди импульсных стала популярна LM2596, но по современным меркам у неё низкий КПД. Если более 1 ампера, то требуется радиатор. Небольшой список аналогичных:

  1. LM317
  2. LM2576
  3. LM2577
  4. LM2596
  5. MC34063

Дополню современным китайским ассортиментом, который хороший по характеристикам, но встречается гораздо реже. На Алиэкспресс помогает поиск именно по маркировке. Список собран по интернет-магазинам:

  • MP2307DN
  • XL4015
  • MP1584EN
  • XL6009
  • XL6019
  • XL4016
  • XL4005
  • L7986A

Так же подходят для китайских дневных ходовых огней ДХО. Из-за дешевизны светодиоды подключены через резистор к авто аккумулятору или автомобильной сети. Но напряжения скачет до 30 вольт импульсами. Низкокачественные светодиоды не выдерживают таких скачков и начинают дохнуть. Скорее всего вы видали мигающие ДХО или ходовые огни, у которых некоторые светодиоды не работают.

Сборка схемы своими руками на этих элементах будет простой. Преимущественно это стабилизаторы напряжения, которые включаются в режиме стабилизации тока.

Не путайте максимальное напряжение всего блока и максимальное напряжение ШИМ контроллера. На блоке могут быть установлены низковольтные конденсаторы на 20В, когда импульсная микросхема имеет вход до 35В.

Стабилизатор для светодиодов

Сделать стабилизатор тока для светодиодов своими руками проще всего на LM317, требуется только рассчитать резистор для светодиода на онлайн калькуляторе. Питание можно использовать подручное, например:

  1. блок питания от ноутбука на 19V;
  2. от принтера на 24В и 32В;
  3. от бытовой электроники на 12 вольт, 9V.

Преимущества такого преобразователя, это низкая цена, легко купить, минимум деталей, высокая надежность. Если схема стабилизатора тока сложнее, то собирать её своими руками становится не рационально. Если вы не радиолюбитель, то импульсный стабилизатор тока проще и быстрее купить. В дальнейшем его можно доработать до необходимых параметров. Подробнее вы можете узнать в разделе «Готовые модули».

Драйвер на 220 В

..

Если вас интересует драйвер для светодиода на 220в, то лучше его заказать или купить. Они имеют среднюю сложность изготовления, но настройка отнимет больше времени и потребуется опыт по наладке.

Светодиодный драйвер на 220 можно извлечь из неисправных светодиодных ламп, светильников и прожекторов, у которых неисправна цепь со светодиодами. К тому же практически любой имеющийся драйвер можно доработать. Для этого узнайте модель ШИМ контроллера, на котором собран преобразователь. Обычно параметры на выходе задаются резистором или несколькими. По даташиту (datasheet) посмотрите, какое сопротивление должно быть, чтобы получить нужные Амперы.

Если поставить регулируемый резистор рассчитанного номинала, то количество Ампер на выходе будет настраиваемым. Только не превышайте номинальную мощность, которая была указана.

Стабилизатор тока, схема

Мне приходится часто просматривать ассортимент на Aliexpress в поисках недорогих но качественных модулей. Разница по стоимости может быть в 2-3 раза, время уходит на поиск минимальной цены. Но благодаря этому делаю заказ на 2-3 штуки для тестов. Покупаю для обзоров и консультаций производителей, которые покупают комплектующие в Китае.

В июне 2016 года оптимальным выбором стал универсальный модуль на XL4015, цена которого 110руб с бесплатной доставкой. Его характеристики подходят для подключения мощных светодиодов до 100 Ватт.

Схема в режиме драйвера.

В стандартном варианте корпус XL4015 припаян к плате, которая служит радиатором. Для улучшения охлаждения на корпус XL4015 надо поставить радиатор. Большинство ставят его сверху, но эффективность такой установки низкая. Лучше систему охлаждения ставить снизу платы, напротив места пайки микросхемы. В идеале её лучше отпаять и поставить на полноценный радиатор через термопасту. Ножки скорее всего придется удлинить проводами. Если потребуется такое серьезное охлаждение контроллеру, то оно потребуется и диоду Шотки. Его тоже придётся поставить на радиатор. Такая доработка значительно повысит надежность всей схемы.

В основном модули не имеют защиты от неправильной подачи питания. Это моментально выводит их из строя, будьте внимательны.

LM317

Применение (крен) даже не требует каких либо навыков и знаний по электронике. Количество внешних элементов в схемах минимально, поэтому это доступный вариант для любого. Её цена очень низкая, возможности и применение многократно испытаны и проверены. Только она требует хорошего охлаждения, это её основной недостаток. Единственное стоит опасаться низкокачественных китайских микросхем ЛМ317, которые имеют параметры похуже.

Микросхемы линейной стабилизации из-за отсутствия лишних шумов на выходе, использовал для питания высококачественных ЦАП класса Hi-Fi и Hi-End. Для ЦАП огромную роль играет чистота питания, поэтому некоторые используют аккумуляторы для этого.

Максимальная сила для LM317 составляет 1,5 Ампера. Для увеличения количества ампер можно добавить в схему полевой транзистор или обычный. На выходе можно будет получить до 10А, задаётся низкоомным сопротивлением. На данной схеме основную нагрузку на себя берёт транзистор КТ825.

Другой способ, это поставить аналог с более высокими техническими характеристиками на большую систему охлаждения.

Регулируемый стабилизатор тока

Меня как радиолюбителя со стажем 20 лет радует ассортимент продаваемых готовых блоков и модулей. Сейчас из готовых блоков можно собрать любое устройство за минимальное время.

Я начал терять доверие к китайской продукции, после того, как у видел в «Танковом биатлоне», как у лучшего китайского танка отпало колесо.

Лидером по ассортименту блоков питания, преобразователей тока DC-DC, драйверов стали китайские интернет-магазины. У них в свободной продаже можно найти практически любые модули, если поискать получше, то и очень узкоспециализированные. Например за 10.000 т.руб можно собрать спектрометр стоимостью 100.000 руб. Где 90% цены это накрутка за бренд и немного доработанный китайский софт.

Цена начинается от 35руб. за DC-DC преобразователь напряжения, драйвер подороже и отличается двумя тремя подстроечными резисторами, вместо одного.

Для более универсального использования лучше подходит регулируемый драйвер. Основное отличие, это установка переменного резистора в цепи, задающей амперы на выходе. Эти характеристики могут быть указаны в типовых схемах включения в спецификациях на микросхему, даташит, datasheet.

Слабые места таких драйверов, это нагрев дросселя и диода Шотки. В зависимости от модели ШИМ контроллера, они выдерживают то 1А до 3А без дополнительного охлаждения микросхемы. Если выше 3А, то требуется охлаждение ШИМ и мощного диода Шотки. Дроссель перематывают более толстым проводом или заменяют на подходящий.

КПД зависит от режима работы, разницы напряжения между входом и выходом. Чем выше коэффициент полезного действия, тем ниже нагрев стабилизатора.

Цены в Китае

Стоимость очень низкая, с учетом того, что доставка включена в цену. Раньше я думал, что из-за товара за 30-50 руб китайцы даже и мараться не будут, много работы при малом доходе. Но как показала практика, я ошибался. Любую копеечную ерунду они упаковывают и отсылают. Приходит в 98% случаев, а закупаю на Aliexpress уже более 7 лет и на большие суммы, наверное уже около 1 млн руб.

Поэтому оформляю заказ заранее, обычно 2-3 штуки одного наименования. Ненужное распродаю на местном форуме или Авито, всё расходится как горячие пирожки.

В настоящее время на рынке широко представлены микросхемы (отечественные и импортные), которые реализуют различный набор функций ШИМ-управления для импульсных источников питания. Среди микросхем подобного типа КР1114ЕУ4 (производитель. ЗАО "Кремний-Маркетинг", Россия) достаточно популярна. Ее импортный аналог - TL494CN (Texas Instrument). Кроме того, она выпускается рядом фирм под разными наименованиями. Например, (Япония) выпускает микросхему IR3M02, (Корея) - КА7500, ф. Fujitsu (Япония) МВ3759.

Микросхема КР1114ЕУ4 (TL494) представляет из себя ШИМ-контроллер импульсного источника питания, работающий на фиксированной частоте. Структура микросхемы приведена на рис.1.

На базе данной микросхемы можно разрабатывать схемы управления для двухтактных и однотактных импульсных источников питания. Микросхема реализует полный набор функций ШИМ-управления: формирование опорного напряжения, усиление сигнала ошибки, формирование пилообразного напряжения, ШИМ-модуляцию, формирование 2-тактного выхода, защиту от сквозных токов и пр. Выпускается в 16-выводном корпусе, цоколевка представлена на рис.2.

Встроенный генератор пилообразного напряжения требует для установки частоты только двух внешних компонентов - Rt и Ct.Частота генератора определяется по формуле:

Для дистанционного выключения генератора можно внешним ключом замкнуть вход RT (вывод 6) на выход ИОНа (вывод 14) или замкнуть вход СТ (вывод 5) на общий провод.

Микросхема имеет встроенный источник опорного напряжения (Uref=5,0 В), способный обеспечить вытекающий ток до 10 мА для смещения внешних компонентов схемы. Опорное напряжение имеет погрешность 5% в диапазоне рабочих температур от 0 до +70°С.

Структурная схема импульсного понижающего стабилизатора приведена на рис.3.

Регулирующий элемент РЭ преобразует входное постоянное напряжение UBX в последовательность импульсов определенной длительности и частоты, а сглаживающий фильтр (дроссель L1и конденсатор С1 преобразует их опять в выходное постоянное напряжение. Диод VD1 замыкает цепь тока через дроссель при выключении РЭ. С помощью обратной связи схема управления СУ управляет регулирующим элементом таким образом, что в итоге получается заданная стабильность выходного напряжения Uн.

Стабилизаторы, в зависимости от способа стабилизации, могут быть релейными, с частотно-импульсной модуляцией (ЧИМ) и с широтноимпульсной модуляцией (ШИМ). В стабилизаторах с ШИМ частота импульсов (период) - величина постоянная, а их длительность обратно пропорциональна значению выходного напряжения. На рис.4 показаны импульсы с различным коэффициентом заполнения Кs.

Стабилизаторы с ШИМ по сравнению со стабилизаторами других типов имеют следующие преимущества:

  • частота преобразования оптимальна (с точки зрения КПД), определяется внутренним генератором схемы управления и не зависит от каких-либо других факторов;
  • частота пульсации на нагрузке является величиной постоянной, что удобно для построения подавляющих фильтров;
  • возможна синхронизация частот преобразования неограниченного количества стабилизаторов, что исключает возникновение биений при питании нескольких стабилизаторов от общего первичного источника постоянного тока.

Единственно, схемы с ШИМ отличаются сравнительно сложной схемой управления. Но разработка интегральных микросхем типа КР1114ЕУ4, содержащих внутри большую часть узлов СУ с ШИМ, позволяет значительно упростить импульсные стабилизаторы.

Схема импульсного понижающего стабилизатора на базе КР1114ЕУ4 приведена на рис.5.

Максимальное входное напряжение стабилизатора - 30 В, оно ограничено предельно допустимым напряжением сток-исток р-канального полевого транзистораVT1 (RFP60P03). Резистор R3 и конденсатор С5 задают частоту генератора пилообразного напряжения, которая определяется по формуле (1). С источника опорного напряжения (вывода 14) D1 через резистивный делитель R6-R7 на инвертирующий вход первого усилителя ошибки (вывод 2) подается часть образцового напряжения. Сигнал обратной связи через делитель R8-R9 подается на неинвертирующий вход первого усилителя ошибки (вывод 1) микросхемы. Выходное напряжение регулируется резистором R7.Резистор R5 и конденсатор С6 осуществляют частотную коррекцию первого усилителя.

Следует отметить, что независимые выходные формирователи микросхемы обеспечивают работу выходного каскада как в двухтактном, так и в однотактном режимах. В стабилизаторе выходной формирователь микросхемы включен в однотактном режиме. Для этого вывод 13 включен на общий провод. Два выходных транзистора (их коллекторы - выводы 8, 11, эмиттеры - выводы 9, 10) включены по схеме с общим эмиттером и работают параллельно. При этом выходная частота равна частоте генератора. Выходной каскад микросхемы через резистивный делитель

R1-R2 управляет регулирующим элементом стабилизатора - полевым транзистором VT1. Для более устойчивой работы стабилизатора по питанию микросхемы (вывод 12) включен LC-фильтр L1-C2-C3. Как видно из схемы, при применении КР1114ЕУ4 требуется сравнительное небольшое число внешних элементов. Уменьшить коммутационные потери и повысить КПД стабилизатора удалось благодаря использованию диода Шоттки (VD2) КД2998Б (Unp=0,54 В, Uобр=30 В, lпр=30 A, fmax=200кГц).

Для защиты стабилизатора от перегрузки по току применен самовосстанавливающийся предохранитель FU1 MF-R400. Принцип работы подобных предохранителей основан на свойстве резко увеличивать свое сопротивление под воздействием определенного значения тока или температуры окружающей среды и автоматически восстанавливать свои свойства при устранения этих причин.

Стабилизатор имеет максимальный КПД (около 90%) на частоте 12 кГц, а КПД при выходной мощности до 10 Вт (Uвых=10 В) достигает 93%.

Детали и конструкция. Постоянные резисторы - типа С2-ЗЗН, переменные - СП5-3 или СП5-2ВА. Конденсаторы С1 С3, С5-К50-35; С4, С6, С7 -К10-17. Диод VD2 можно заменить любым другим диодом Шоттки с параметрами не хуже вышеуказанных, например, 20TQ045. Микросхема КР1114ЕУ4 заменяется на TL494LN или на TL494CN. Дроссель L1 - ДМ-0,1-80 (0,1 А, 80 мкГн). Дроссель L2 индуктивностью порядка 220 мкГн выполнен на двух сложенных вместе кольцевых магнитопроводах. МП-140 К24х13x6,5 и содержит 45 витков провода ПЭТВ-2 01,1 мм, уложенных равномерно в два слоя по всему периметру кольца. Между слоями проложены два слоя лакоткани. ЛШМС-105-0.06 ГОСТ 2214-78. Самовосстанавливающийся предохранитель типа MF-RXXX можно подобрать для каждого конкретного случая.

Стабилизатор выполнен на макетной плате размерами 55x55 мм. Транзистор устанавливается на радиаторе площадью не менее 110 см2. При монтаже целесообразно разделить общий провод силовой части и общий провод микросхемы, а также минимизировать длину проводников (особенно силовой части). В налаживании стабилизатор при правильном монтаже не нуждается.

Общая стоимость покупных радиоэлементов стабилизатора составила у меня порядка 10$, причем стоимость транзистора VT1 - 3...4$. Для снижения стоимости вместо транзистора RFP60P03 можно применить более дешевый RFP10P03, но, конечно, это несколько ухудшит технические характеристики стабилизатора.

Структурная схема импульсного параллельного стабилизатора повышающего типа приведена на рис.6.

В этом стабилизаторе регулирующий элемент РЭ, работающий в импульсном режиме, включен параллельно нагрузке Rh. Когда РЭ открыт, ток от входного источника (Ubx) протекает через дроссель L1, запасая в нем энергию. Диод VD1 при этом отсекает нагрузку и не позволяет конденсатору С1 разряжаться через открытый РЭ. Ток в нагрузку в этот промежуток времени поступает только от конденсатора С1 В следующий момент, когда РЭ закрыт, ЭДС самоиндукции дросселя L1 суммируется с входным напряжением, и энергия дросселя отдается в нагрузку. При этом выходное напряжение будет больше входного. В отличие от понижающего стабилизатора (рис.1), здесь дроссель не является элементом фильтра, а выходное напряжение становится больше входного на величину, которая определяется индуктивностью дросселя L1 и скважностью импульсов регулирующего элемента РЭ.

Принципиальная схема импульсного повышающего стабилизатора показана на рис.7.

В нем применены, в основном, те же электронные компоненты, что и в схеме понижающего стабилизатора (рис.5).

Уменьшить пульсации можно за счет увеличения емкости выходного фильтра. Для более "мягкого" запуска между общим проводом и неинвертирующим входом первого усилителя ошибки (выводом 1) включен конденсатор С9.

Постоянные резисторы - С2-ЗЗН, переменные - СП5-3 или СП5-2ВА.

Конденсаторы С1 С3, С5, С6, С9 - К50-35; С4, С7, С8 - К10-17. Транзистор VT1 - IRF540 (n-канальный полевой транзистор с Uси=100 В, lc=28 A, Rси=0,077 Ом) - устанавливается на радиаторе с площадью эффективной поверхности не менее 100 см2. Дроссель L2 - такой же, как и в предыдущей схеме.

Первое включение стабилизатора лучше сделать при небольшой нагрузке (0,1...0,2 А) и минимальном выходном напряжении. Затем медленно увеличивать выходное напряжение и ток нагрузки до максимальных значений.

Если повышающий и понижающий стабилизаторы будут работать от одного входного напряжения Uin то их частоту преобразования можно засинхронизировать. Для этого (если понижающий стабилизатор будет ведущим, а повышающий ведомым) в повышающем стабилизаторе нужно удалить резистор R3 и конденсатор С7, замкнуть выводы 6 и 14 микросхемы D1, а вывод 5 D1 соединить с выводом 5 микросхемы D1 понижающего стабилизатора.

В стабилизаторе повышающего типа дроссель L2 не участвует в сглаживании пульсации выходного постоянного напряжения, поэтому для качественной фильтрации выходного напряжения необходимо применять фильтры с достаточно большими значениями L и С. Это, соответственно, приводит к увеличению массы и габаритов фильтра и устройства в целом. Поэтому удельная мощность понижающего стабилизатора больше, чем повышающего.

Использование различного рода техники в повседневной жизни –это непременный атрибут современного общества. Но далеко не все приборы рассчитаны на подключение к стандартной электросети на 220В. Многие из них потребляют энергию с напряжением от 1 до 25В. Для ее подачи используют специальное оборудование.

Однако его основная задача состоит не столько в понижении параметров на выходе, сколько в соблюдении стабильного их уровня в сети. Решить ее можно при помощи стабилизационного устройства. Но как правило такие приборы достаточно громоздки и не совсем удобны в применении. Лучший вариант – это импульсный стабилизатор напряжения. Он отличается от линейных не только габаритами, но и по принципу работы.

Что представляет собой импульсный стабилизатор

Прибор, состоящий из двух основных узлов:

  • Интегрирующего;
  • Регулировки.

На первом происходит накапливание энергии с последующей ее отдачей. Регулирующий блок подает ток и при необходимости выполняет прерывание этого процесса. Причем, в отличие от линейных моделей, в импульсных, этот элемент может находиться в замкнутом или разомкнутом состоянии. Иными словами, он работает как ключ.

Устройство импульсного прибора

Сфера применения таких приборов достаточно широка. Однако наиболее часто они используются в навигационном оборудовании, а также импульсный стабилизатор следует купить для подключения:

  • ЖК телевизоров
  • Источников питания, используемых в цифровых системах;
  • Низковольтного промышленного оборудования.

Могут использоваться импульсные повышающие стабилизаторы напряжения и в сетях с переменным током для преобразования его в постоянный. Приборы этого класса также находят применение в качестве источников питания для мощных светодиодов, подзарядки аккумуляторов.

Как работает оборудование

Принцип действия устройства заключается в следующем. При замыкании регулирующего элемента происходит накопление энергии в интегрирующем. При этом происходит повышение напряжения. При размыкании ключа электричество постепенно отдается потребителям, приводя к снижению напряжения.

Смотрим видео, принцип работы прибора:

Столь простой способ функционирования прибора позволяет экономно расходовать электроэнергию, а кроме того дал возможность создать миниатюрный агрегат.

В качестве регулирующего элемента в нем могут использоваться следующие детали:

  • Тиристор;
  • Транзисторы.

В роли интегрирующих узлов прибора выступают:

  • Дроссель;
  • Батарея;
  • Конденсатор.

Конструктивные особенности стабилизатора связаны со способом его работы. Различают устройства двух типов:

  1. С триггером Шмитта.

Рассмотрим, чем отличаются эти две разновидности импульсных стабилизаторов напряжения.

Модели ШИМ

Модель ШИМ

Приборы этого типа, в конструктивном плане имеют некоторые отличия. Они состоят из двух основных элементов, а также:

  1. Генератора;
  2. Модулятора;
  3. Усилителя.

Их работа имеет прямую зависимость от величины напряжения на входе, а также скважности импульсов.

При размыкании ключа происходит переход энергии в нагрузку и в работу включается усилитель. Он сравнивает значения напряжения и определив разницу между ними передает усиление на модулятор.

Конечные импульсы должны иметь отклонение скважности, которое пропорционально выходным параметрам. Ведь от них зависит положение ключа. При конкретных значения скважности он размыкается или замыкается. Поскольку главную роль в работе прибора играют импульсы, то они и дали ему название.

Приборы с триггером Шмитта

Этот тип импульсных стабилизаторов напряжения отличается минимальным набором элементов. Главная роль в нем отведена триггеру, в состав которого включен компаратор. Задача этого элемента – сравнение значения выходного напряжения с максимально допустимым.

Смотрим видео принцип работы прибора с триггером Шмитта:

Работа прибора заключается в следующем. При превышении максимального напряжения происходит переключение триггера в нулевую позицию с размыканием ключа. Одновременно происходит разрядка дросселя. Но как только напряжение достигнет минимального значения происходит переключение с 0 на 1. Это приводит к замыканию ключа и поступлению тока в интегратор.

Хотя такие устройства и отличаются довольно простой схемой применять их можно только на отдельных направлениях. Объясняется это тем, что импульсные стабилизаторы напряжения могут быть понижающими или повышающими.

Классификация приборов

Подразделение приборов на типы осуществляется по различным критериям. Так по соотношению напряжения на входе и выходе различают следующие виды устройств:

  • Инвертирующие;
  • Произвольно изменяющие напряжение.

В качестве ключа могут использоваться такие детали, как:

  • Транзисторы;
  • Тиристоры.

Кроме этого существуют отличия и в самой работе импульсных стабилизаторов постоянного напряжения. Исходя из этого они классифицируются на модели, функционирующие на:

  1. На основе широтно-импульсной модуляции;
  2. Двухпозиционные.

Достоинства и недостатки стабилизаторов

Модульный стабилизатор

Как и любое другое устройство модульный стабилизатор не является идеальным. Он имеет свои плюсы и минусы, о которых следует знать. К достоинствам прибора относятся:

  • Легкое достижение стабилизации;
  • Высокий КПД;
  • Выравнивание напряжения в широком диапазоне;
  • Устойчивые выходные параметры;
  • Компактные габариты;
  • Мягкое включение.

К недостаткам устройства относится в первую очередь сложное конструктивное исполнение. Наличие в нем большого количества специфических элементов не позволяет добиваться высокой надежности. Кроме того, минусом импульсного стабилизатора постоянного напряжения является:

  • Создание большого числа частотных помех;
  • Сложность выполнения ремонтных работ;
  • Потребность в применении устройств, компенсирующих коэффициент мощности.

Допустимый диапазон частот

Работа этого устройства возможна при достаточно высокой частоте преобразования, что является его главным отличием от приборов с сетевым трансформатором. Повышение этого параметра позволило добиться минимальных габаритов.

Для большинства моделей диапазон частот может составлять от 20 до 80 кГц. Однако выбирая как ключевые, так и ШИМ-приборы нужно учитывать высшие гармоники токов. При этом верхнее значение параметра имеет определенные ограничения, соответствующие требованиям, предъявляемым к радиочастотной аппаратуре.

Применение устройств в сетях переменного тока

Приборы этого класса способны преобразовывать постоянный ток на входе в такой же на выходе. Если предполагается использовать их в сети переменного тока, то потребуется установка выпрямителя и сглаживающего фильтра.

Однако следует знать, что с ростом напряжения на входе устройства уменьшается выходной ток и наоборот.

Возможно с использованием мостового выпрямителя. Но в таком случае он будет источником нечетных гармоник и для достижения необходимого коэффициента мощности потребуется использование конденсатора.

Обзор производителей

Выбирая стабилизатор, обращают внимание не только на его технические характеристики, но и на конструктивные особенности. Важна и марка производителя. Вряд ли будет иметь высокое качество прибор, изготовленный не известной широкому кругу покупателей фирмой.

Продукция Smartmodule

Поэтому большинство потребителей предпочитают выбирать модели, принадлежащие популярным брендам, таким как:

  • Hobbywing;
  • Smartmodule.

Продукция этих компаний отличается высоким качеством, надежностью и рассчитана на длительный срок службы.

Заключение

Использование бытовой техники и других электроприборов стало неотъемлемым условием комфортной жизни. Но для того, чтобы ваши устройства не выходили из строя при нестабильной работе электросетей, стоит заранее подумать о приобретении стабилизатора. Какую модель выбрать зависит от параметров используемого оборудования. Если предполагается подключение современных ЖК телевизоров, мониторов и аналогичных устройств, то идеальный вариант – это импульсный стабилизатор.