ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Мультивибратор на трех светодиодах схема. Как работает мультивибратор схема. Принцип действия мультивибратора на видео c объяснением

Мигалка на светодиодах или как собрать симметричный мультивибратор своими руками. Схема симметричного мультивибратора обязательно изучается и собирается в кружках электроники. Схема мультивибратора одна из самых известных и часто применяемых в различных электронных конструкциях. Симметричный мультивибратор при работе генерирует колебания по форме приближающиеся к прямоугольной. Простота мультивибратора обусловлена его конструкцией — это всего два транзистора и несколько дополнительных элементов. Мастер предлагает вам собрать свою первую электронную схему мигалку на светодиодах. Что бы не быть разочарованным в случае неудачи, ниже представлена подробная пошаговая инструкция по сборке своими руками мультивибратора мигалки на светодиодах с фото и видео иллюстрациями.

Как собрать мигалку на светодиодах своими руками

Немного теории. Мультивибратор это по сути двухкаскадный усилитель на транзисторах VT1 и VT2 с цепью положительной обратной связи через электролитический конденсатор С2 между каскадами усиления на транзисторах VT2 и VT1. Такая обратная связь превращает схему в генератор. Название симметричный мультивибратор обусловлено одинаковыми значениями пар элементов R1=R2, R3=R4, C1=C2. При таких значениях элементов мультивибратор будет генерировать импульсы и паузы между импульсами равной длительности. Частота следования импульсов задается в большей степени значениями пар R1=R2 и C1=C2. Контролировать длительность импульсов и пауз можно будет по вспышкам светодиодов. При нарушении равенства пар элементов мультивибратор становится несимметричным. Несимметричность будет обусловлена прежде всего различием в длительности импульса и длительности паузы.

Мультивибратор собирается на двух транзисторах, кроме того потребуется четыре резистора, два электролитических конденсатора и два светодиода для индикации работы мультивибратора. Задача приобретения деталей и печатной платы решается легко. Вот ссылка на покупку готового набора деталей http://ali.pub/2bk9qh . Набор включает в себя все детали, добротную печатную плату размером 28 мм × 30 мм, схему, монтажную схему и спецификацию. Ошибок расположения деталей на рисунке печатной платы практически нет.

Состав набора деталей мультивибратора

Приступим к сборке схемы, для работы потребуется маломощный паяльник, флюс для пайки, припой, бокорезы и батареи питания. Схема простая, но ее надо собрать правильно и без ошибок.

  1. Ознакомьтесь с содержимым пакета. Расшифруйте по цветовому коду номиналы резисторов и установите их на плату.
  2. Припаяйте резисторы и откусите выступающие остатки электродов.
  3. Электролитические конденсаторы должны размещаться на плате определенным образом. В правильном размещении вам поможет монтажная схема и рисунок на плате. Электролитические конденсаторы имеют на корпусе маркировку отрицательного электрода, а положительный электрод имеет чуть большую длину. Расположение отрицательного электрода на плате находится в заштрихованной части обозначения конденсатора.
  4. Установите конденсаторы на плату и припаяйте их.
  5. Размещение транзисторов на плате строго по ключу.
  6. Светодиоды также имеют полярность электродов. Смотрите фото. Устанавливаем и припаиваем их. Старайтесь не перегревать эту деталь при пайке. Плюс светодиода LED2 находится ближе к резистору R4 (смотрите видео).

    Светодиодыы установлены на плату мультивибратора

  7. Припаяйте согласно полярности проводники питания и подайте напряжение от батарей. При напряжении питания 3 Вольта светодиоды включились вместе. После секундного разочарования, было подано напряжение от трех батарей и светодиоды начали попеременного мигать. Частота мультивибратора зависит от напряжения питания. Так как схема должна была устанавливаться в игрушку с питанием от 3 Вольт пришлось заменить резисторы R1 и R2 на резисторы номиналом 120 кОм, четкое попеременное мигание было достигнуто. Смотрите видео.

Мигалка на светодиодах — симметричный мультивибратор

Применение схемы симметричного мультивибратора весьма широко. Элементы схем мультивибратора найдутся в вычислительной технике, радиоизмерительной и медицинской аппаратуре.

Набор деталей для сборки мигалки на светодиодах можно приобрести по следующей ссылке http://ali.pub/2bk9qh . Если хотите серьезно попрактиковаться в пайке простых конструкций Мастер рекомендует приобрести комплект из 9 наборов, что здорово сэкономит ваши расходы на пересылку. Вот ссылка для покупки http://ali.pub/2bkb42 . Мастер собрал все наборы и они заработали. Успехов и роста навыков в пайке.

МУЛЬТИВИБРАТОР

Мультивибратор. С этой схемы, уверен, многие начинали свою радиолюбительскую деятельность. Это так-же была и моя первая схема - кусок фанеры, пробитые гвоздями дырки, выводы деталей скручены проволокой за неимением паяльника. И всё прекрасно заработало!

В качестве нагрузки используются светодиоды. Когда мультивибратор работает - светодиоды переключаются.

Для сборки потребуется минимум деталей. Вот список:

  1. - Резисторы 500 Ом - 2 штуки
  2. - Резисторы 10 кОм - 2 штуки
  3. - Конденсатор электролитический 1 мкФ на 16 вольт - 2 штуки
  4. - Транзистор КТ972А - 2 штуки (пойдут также КТ815 или КТ817), можно и КТ315, если ток не более 25ма.
  5. - Светодиод - 2 штуки любые
  6. - Питание от 4.5 до 15 вольт.

На рисунке показано в каждом канале по одному светодиоду, но можно включать параллельно по несколько штук. Или последовательно (цепочкой 5 штук) , но тогда питание не меньше 15 вольт.

Транзисторы КТ972А являются составными транзисторами, то есть в их корпусе имеется два транзистора, и он обладает высокой чувствительностью и выдерживает значительный ток без теплоотвода.

Для проведения опытов не стоит делать печатную плату, можно собрать всё навесным монтажом. Спаивай так, как показано на рисунках.

Рисунки специально сделаны в разных ракурсах и можно подробно рассмотреть все детали монтажа.

Простые схемы самодельных светодиодных мигалок на основе транзисторных мультивибраторов. На рисунке 1 показана схема мультивибратора, переключающего два светодиода. Светодиоды мигают поочередно, то есть, когда горит HL1, светодиод НL2 не горит, а наоборот.

Можно вмонтировать схему в ёлочную игрушку. Когда включено питание игрушка будет мигать. Если светодиоды будут разного цвета, то игрушка будет одновременно с миганием и менять цвет свечения.

Частоту мигания можно изменять подбором сопротивлений резисторов R2 и R3, кстати, если эти резисторы будут не одинаковых сопротивлений можно добиться того, что один светодиод будет светиться дольше другого.

Но, двух светодиодов для даже самой маленькой настольной ёлочки как-то маловато. На рисунке 2 показана схема, переключающая две гирлянды по три светодиода. Светодиодов стало больше, больше и напряжение, необходимое для их питания. Поэтому теперь источник не 5-вольтовый, а 9-вольтовый (или 12-вольтовый).

Рис.1. Схема самой простой мигалки на светодиодах и транзисторах.

Рис.2. Схема простой мигалки на шести светодиодах и двух транзисторах.

Рис. 3. Схема светодиодной мигалкис мощными выходами для нагрузки.

В качестве источника питания можно использовать блок питания от старой телеигровой приставки вроде «Денди» или купить в магазине недорогой «сетевой адаптер» с выходным напряжением 9V или 12V.

И все же, даже шести светодиодов для домашней ёлки недостаточно. Хорошо бы увеличить число светодиодов втрое. Да и светодиоды использовать не простые, а сверх яркие. Но, если в каждой гирлянде будет уже по девять последовательно включенных светодиодов, да еще и сверх ярких, то суммарное напряжение, необходимое для их свечения будет уже 2,3Vх9=20,7V.

Плюс, еще несколько вольт необходимых для функционирования мультивибратора. При том в продаже обычно «сетевые адаптеры» из числа недорогих, не более чем на 12V.

Выйти из положения можно, если разделить светодиоды на три группы по три штуки. И группы включить параллельно. Но это приведет к возрастанию тока через транзисторы и нарушит работу мультивибратора. Впрочем, можно сделать дополнительные усилительные каскады на еще двух транзисторах (рис. 3).

Две гирлянды - хорошо, но они просто мигают поочередно. Вот если бы хотя бы три! Для такого случая существует так называемая схема «трехфазного мультивибратора». Она показана рисунке 4.

Рис.4. Схема мультивибратора на трех транзисторах.

Если в коллекторных цепях транзисторов включить светодиодные гирлянды (рис.5), получится своеобразный эффект бегущего огня. Скорость воспроизведе ния светового эффекта можно регулировать заменяя конденсаторы С1, С2 и С3 конденсаторами других емкостей. А так же заменяя резисторы R2, R4, R6 резисторами другого сопротивления. При увеличении емкости или сопротивления скорость переключения светодиодов снижается.

Рис. 5. Схема мультивибратора для получения эффекта бегущего огня.

А на рисунке 6 - умощненный вариант на 27 светодиодов. В «мигалках» по схемам на рисунках 3 и 6 можно использовать практически любые светодиоды, но все же желательно сверх яркие или супер яркие.

Рис. 6. Схема умощненного варианта мигалки на 27 светодиодах.

Монтаж можно выполнить на макетных печатных платах, которые продаются в магазинах радиодеталей. Либо вообще без плат, спаяв детали между собой.

Мультивибраторы – это еще одна форма осцилляторов. Генератор представляет собой электронную схему, которая способна поддерживать сигнал переменного тока на выходе. Он может генерировать прямоугольные, линейные или импульсные сигналы. Для колебания генератор должен удовлетворять двум условиям Баркгаузена:

Т коэффициент усиления контура он должен быть немного больше единицы.

Сдвиг фазы цикла должен быть 0 градусов или 360 градусов.

Для выполнения обоих условий генератор должен иметь некоторую форму усилителя, и часть его выхода должна быть регенерирована на вход. Если коэффициент усиления усилителя меньше единицы, схема не будет колебаться, а если она больше единицы, схема будет перегружена и будет давать искаженную форму волны. Простой генератор может генерировать синусоидальную волну, но не может генерировать прямоугольную волну. Прямоугольная волна может быть сформирована с помощью мультивибратора.

Мультивибратор – это форма генератора, которая имеет две ступени, благодаря которым мы можем получить выход из любого из состояний. Это в основном две схемы усилителя, скомпонованные с регенеративной обратной связью. При этом ни один из транзисторов не проводит одновременно. Одновременно только один транзистор проводит, а другой находится в выключенном состоянии. Некоторые схемы имеют определенные состояния; состояние с быстрым переходом называется процессами переключения, где происходит быстрое изменение тока и напряжения. Это переключение называется триггерным. Следовательно, мы можем запустить цепь внутри или снаружи.

Схемы имеют два состояния.

Одним из них является стабильное состояние, в котором цепь остается навсегда без какого-либо запуска.
Другое состояние является нестабильным: в этом состоянии схема остается в течение ограниченного периода времени без какого-либо внешнего запуска и переключается в другое состояние. Следовательно, использование многовибарторов осуществляется в двух состояниях цепей, таких как таймеры и триггеры.

Нестабильный мультивибратор с использованием транзистора

Это свободно работающий генератор, который непрерывно переключается между двумя нестабильными состояниями. При отсутствии внешнего сигнала транзисторы поочередно переключаются из состояния отключения в состояние насыщения на частоте, определяемой постоянными времени RC цепей связи. Если эти постоянные времени равны (R и C равны), то будет генерироваться прямоугольная волна с частотой 1 / 1,4 RC. Следовательно, нестабильный мультивибратор называется генератором импульсов или генератором прямоугольных импульсов. Чем больше значение базовой нагрузки R2 и R3 по отношению к нагрузке коллектора R1 и R4, тем больше коэффициент усиления по току и острее будет край сигнала.

Основным принципом работы нестабильного мультивибратора является небольшое изменение электрических свойств или характеристик транзистора. Это различие приводит к тому, что один транзистор включается быстрее, чем другой, когда питание подается в первый раз, что вызывает колебания.

Схема Объяснение

нестабильный мультивибратор состоит из двух поперечных связи усилителей RC.
Схема имеет два нестабильных состояния
Когда V1 = НИЗКИЙ и V2 = ВЫСОКИЙ, тогда Q1 ВКЛ и Q2 ВЫКЛ
Когда V1 = ВЫСОКИЙ и V2 = НИЗКИЙ, Q1 ВЫКЛ. и Q2 ВКЛ.
При этом R1 = R4, R2 = R3, R1 должно быть больше, чем R2
C1 = C2
При первом включении цепи ни один из транзисторов не включен.
Базовое напряжение обоих транзисторов начинает увеличиваться. Любой из транзисторов включается первым из-за разницы в легировании и электрических характеристиках транзистора.

Рис. 1: Принципиальная схема работы транзисторного нестабильного мультивибратора

Мы не можем сказать, какой транзистор проводит первым, поэтому мы предполагаем, что Q1 проводит первым, а Q2 выключен (C2 полностью заряжен).

Q1 проводит, а Q2 отключен, следовательно, VC1 = 0 В, так как весь ток на землю из-за короткого замыкания Q1, и VC2 = Vcc, так как все напряжение на VC2 падает из-за разомкнутой цепи TR2 (равно напряжению питания).
Из-за высокого напряжения VC2 конденсатор C2 начинает заряжаться через Q1 через R4, а C1 начинает заряжаться через R2 через Q1. Время, необходимое для зарядки C1 (T1 = R2C1), больше, чем время, необходимое для зарядки C2 (T2 = R4C2).
Так как правая пластина C1 подключена к базе Q2 и заряжается, значит, у этой пластины высокий потенциал, и когда она превышает напряжение 0,65 В, она включается Q2.
Поскольку C2 полностью заряжен, его левая пластина имеет напряжение -Vcc или -5V и подключена к базе Q1. Следовательно, он выключается Q2
TR Теперь TR1 выключен, и Q2 проводит, следовательно, VC1 = 5 В и VC2 = 0 В. Левая пластина C1 ранее находилась под напряжением -0,65 В, которое начинает подниматься до 5 В и подключается к коллектору Q1. C1 сначала разряжается от 0 до 0,65 В, а затем начинает заряжаться через R1 через Q2. Во время зарядки правая пластина С1 имеет низкий потенциал, который выключает Q2.
Правая пластина C2 подключена к коллектору Q2 и предварительно находится на + 5В. Таким образом, C2 сначала разряжается от 5 В до 0 В, а затем начинает заряжаться через сопротивление R3. Левая пластина C2 во время зарядки находится под высоким потенциалом, который включает Q1, когда достигает напряжения 0,65 В.

Рис. 2: Принципиальная схема работы транзисторного нестабильного мультивибратора

Теперь Q1 проводит, а Q2 выключен. Вышеуказанная последовательность повторяется, и мы получаем сигнал на обоих коллекторах транзистора, который не в фазе друг с другом. Для получения идеальной прямоугольной волны любым коллектором транзистора мы принимаем как сопротивление коллектора транзистора, базовое сопротивление, то есть (R1 = R4), (R2 = R3), а также то же значение конденсатора, что делает нашу схему симметричной. Следовательно, рабочий цикл для низкого и высокого значения выходного сигнала является тем же, который генерирует прямоугольную волну
Constant Постоянная времени формы сигнала зависит от базового сопротивления и коллектора транзистора. Мы можем рассчитать его период времени по: Постоянная времени = 0.693RC

Принцип действия мультивибратора на видео c объяснением

В этом видеоуроке канала Паяльник TV покажем, как взаимосвязаны элементы электрической цепи и познакомимся с происходящими в ней процессами. Первой схемой, на основе которой будет рассмотрен принцип работы, является схема мультивибратора на транзисторах. Схема может находиться в одном из двух состояний и периодически переходит из одного в другое.

Анализ 2-х состояний мультивибратора.

Всё, что мы наблюдаем сейчас, это два светодиода, которые поочерёдно мигают. Почему это происходит? Рассмотрим сначала первое состояние.

Первый транзистор VT1 закрыт, а второй транзистор полностью открыт и не препятствует протеканию коллекторного тока. Транзистор в этот момент находится в режиме насыщения, что позволяет снизить на нём падение напряжения. И поэтому правый светодиод горит в полную силу. Конденсатор C1 в первый момент времени был разряжен, и ток беспрепятственно проходил на базу транзистора VT2, полностью открывая его. Но спустя мгновение конденсатор начинает быстро заряжаться базовым током второго транзистора через резистор R1. После того, как он полностью зарядится (а как известно, полностью заряженный конденсатор не пропускает ток), то транзистор VT2 вследствие этого закрывается и светодиод гаснет.

Напряжение на конденсаторе C1 равно произведению базового тока на сопротивление резистора R2. Перенесемся во времени назад. Пока транзистор VT2 был открыт и правый светодиод горел, конденсатор C2, заряженный ранее в предыдущем состоянии, начинает медленно разряжаться через открытый транзистор VT2 и резистор R3. Пока он не разрядился, напряжение на базе VT1 будет отрицательным, которое полностью запирает транзистор. Первый светодиод не горит. Получается, что к моменту затухания второго светодиода конденсатор C2 успевает разрядиться и переходит в готовность пропустить ток на базу первого транзистора VT1. К тому моменту, когда перестаёт гореть второй светодиод, загорается первый светодиод.

А во втором состоянии происходит всё то же самое, но наоборот, транзистор VT1 открыт, VT2 закрыт. Переход в другое состояние происходит тогда, когда конденсатор C2 разряжается, напряжение на нём уменьшается. Разрядившись полностью, он начинает заряжаться в обратную сторону. Когда напряжение на переходе база-эмиттер транзистора VT1 достигнет напряжения, достаточного для его открывания, примерно 0,7 В, этот транзистор начнёт открываться и первый светодиод загорится.

Снова обратимся к схеме.

Через резисторы R1 и R4 происходит зарядка конденсаторов, а через R3 и R2 происходит разрядка. Резисторы R1 и R4 ограничивают ток первого и второго светодиода. От их сопротивления зависит не только яркость свечения светодиодов. Они также определяют время зарядки конденсаторов. Сопротивление R1 и R4 подбирается намного меньшее, чем R2 и R3, чтобы зарядка конденсаторов происходила быстрее, чем их разрядка. Мультивибратор используется для получения прямоугольных импульсов, которые снимаются с коллектора транзистора. При этом нагрузка подключается параллельно одному из коллекторных резисторов R1 или R4.

На графике представлены прямоугольные импульсы, вырабатываемые данной схемой. Одна из областей называется фронт импульса. Фронт имеет наклон, и чем больше будет время зарядки конденсаторов, тем этот наклон будет больше.


Если в мультивибраторе использованы одинаковые транзисторы, конденсаторы одинаковой ёмкости, и если резисторы имеют симметричные сопротивления, то такой мультивибратор называется симметричным. Он имеет одинаковую длительность импульсов и длительность пауз. А если имеются различия в параметрах, то мультивибратор будет несимметричным. Когда мы подключаем мультивибратор к источнику питания, то в первый момент времени оба конденсатора разряжены, а значит на базу обоих конденсаторов поступит ток и появится неустановившийся режим работы, при котором должен открыться лишь один из транзисторов. Так как эти элементы схемы имеют некоторые погрешности номиналов и параметров, один из транзисторов откроется первым, и мультивибратор запустится.

Если вы захотите смоделировать данную схему в программе Multisim, то нужно выставить номиналы резисторов R2 и R3 так, чтобы их сопротивления отличались хотя бы на десятую часть Ома. То же самое проделайте с ёмкостью конденсаторов, иначе мультивибратор может не запуститься. При практической реализации данной схемы я рекомендую осуществлять питание напряжением от 3 до 10 Вольт, а параметры самих элементов сейчас вы узнаете. При условии, что используется транзистор КТ315. Резисторы R1 и R4 не оказывают влияния на частоту импульсов. В нашем случае они ограничивают ток светодиода. Сопротивление резисторов R1 и R4 можно взять от 300 Ом до 1кОм. Сопротивление резисторов R2 и R3 от 15 кОм до 200 кОм. Ёмкость конденсаторов от 10 до 100 мкФ. Представим таблицу со значениями сопротивлений и ёмкостей, в которой приведены примерная ожидаемая частота импульсов. То есть, чтобы получить импульс длительностью 7 секунд, то есть, длительность свечения одного светодиода, равная 7 секундам, нужно использовать резисторы R2 и R3 сопротивлением 100 кОм и конденсатора ёмкостью 100 мкФ.

Вывод.

Времязадающими элементами данной схемы являются резисторы R2, R3 и конденсаторы C1 и C2. Чем меньше их номиналы, тем чаще будут переключаться транзисторы, и тем чаще будут мерцать светодиоды.

Мультивибратор можно реализовать не только на транзисторах, но и на базе микросхем. Оставляйте свои комментарии, не забывайте подписаться на канал «Паяльник TV» на ютубе, чтобы не пропустить новые интересные видео.

Еще интересная о радиопередатчике.

Знают все радиолюбители, а вот то, что он может работать и на 3 канала - не многие. Простая схема трёхфазного мультивибратора на трёх транзисторах при работе создает эффект бегущей дорожки из трёх источников света (светодиодов). Резисторы на 68 Ом возможно и не использовать, они только ограничивают ток светодиода. На фото вместо резисторов 68 Ом - два параллельно соединённые по 150 Ом, которые дали при таком соединении 75 Ом.

Электролитические конденсаторы 47 мкФ определяют частоту мигания светодиодов, чем выше их ёмкость - тем реже происходит переключение светодиодов, при уменьшение количества мкФ светодиоды мигают чаще. Если поставите конденсаторы большой ёмкости (200 мкФ и выше), то три светодиода будут просто гореть.

Возможно использование других транзисторов: BC547 , КТ3102 , КТ315.

Плата существует как формата.lay для , так и для программы с расширением.lyt . Первая спроектирована под транзисторы КТ315 , а вторая под BC547 (КТ3102 ). Скачать файлы .

Я использовал синие крупные светодиоды диаметром 10 мм. Если есть желание, можно впаять сразу два светодиода, соединённые последовательно, ток немного возрастёт, но совокупная яркость излучаемого света значительно увеличится.

Питание для схемы около 5 вольт, удобно применять 3-4 батарейки или аккумулятора типоразмером AA (пальчиковые). Если подключите к схеме источник питания с напряжением больше нужного, то частота мигания уменьшится. При слишком большом напряжение светодиоды будут просто гореть. Ток потребления мультивибратора весьма мал и колеблется в рамках 50-54 mA, у меня вышел 53,3 милиампер.

Ниже можно увидеть 3D модель собранной на печатной плате схемы (3D Visualization ). Длинна моей платы составила 3,9 см, а ширина 2,8 см (~1.5x1 inch).