ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Расчет тока короткого замыкания формула. Ток короткого замыкания. Принцип действия короткого замыкания

Проектирование электроустановок квартир и коттеджей (Schneider Electric)

2.1. Расчет электрических нагрузок

На начальной стадии проектирования, когда практически неизвестны точные данные электроприемников, но необходимо получить технические условия на присоединение электрической мощности, возникает вопрос, как рассчитать величину установленной мощности потребителей и на этой основе определить расчетную нагрузку на вводе в квартиру или коттедж. При этом, под понятием расчетная электрическая нагрузка Рр потребителя или элемента сети подразумевается мощность, равная ожидаемой максимальной нагрузке за 30 мин.


В Нормативах по определению расчетных электрических нагрузок зданий (квартир), коттеджей, микрорайонов (кварталов) застройки и элементов городской распределительной сети (изменения и дополнения к Инструкции по проектированию городских электрических сетей - РД 34.20.185-94) приведены удельные расчетные нагрузки.


Указанные Нормативы составлены на основании анализа режимов электропотребления перспективного набора электробытовых приборов и машин в квартире (коттедже). Учитывались данные по установленной мощности приборов и машин, определялся суточный расход электроэнергии, возможное время работы каждого прибора и машины.


В удельных расчетных нагрузках за основу принято, что расчетная нагрузка отдельной квартиры (коттеджа) или небольшого числа квартир (коттеджей) определяется приборами эпизодического пользования, но значительной установленной мощности. К таким приборами относятся, например, стиральные машины с подогревом воды, джакузи, посудомоечные машины с подогревом воды, электрические чайники, электрические сауны и др. Для этих приборов определялись коэффициенты спроса с последующим суммированием их расчетных нагрузок с нагрузками всех прочих приборов малой мощности, которые определялись с использованием усредненного значения коэффициента спроса.


Разработчиками Нормативов в качестве базовых исходных данных принято:


1. Средняя площадь квартиры (общая), м2:


в типовых зданий массовой застройки 70


в зданиях с квартирами повышенной комфортности


(элитные) по индивидуальным проектам 150


2. Площадь (общая) коттеджа, м2 50 - 600


3. Средняя семья, чел 3,1


4. Установленная мощность, кВт:


квартир с газовыми плитами 21,4


квартир с электрическими плитами в типовых зданиях 32,6


квартир с электрическими плитами в элитных зданиях 39,6


коттеджей с газовыми плитами 35,7


коттеджей с газовыми плитами и электрическими саунами 48,7


коттеджей с электрическими плитами 47,9


коттеджей с электрическими плитами и электрическими саунами 59,9


В табл. 2.1 приведена удельная расчетная нагрузка электроприемников квартир жилых зданий, а в табл. 2.2 - коттеджей.


Во «Временной инструкции по расчету электрических нагрузок жилых зданий» РМ2696-01 расчетную нагрузку на вводе в квартиру для домов I категории рекомендуется определять по формуле:



где Рз - заявленная мощность электроприемников, определяемая суммированием номинальных мощностей электробытовых и осветительных приборов, а также розеточной сети;


Таблица 2.1 Удельная расчетная электрическая нагрузка электроприемников квартир жилых зданий


Удельная расчетная электрическая нагрузка электроприемников квартир жилых зданий

Потребители электроэнергии

Удельная расчетная электрическая нагрузка, кВт/квартира, при числе квартир

Квартиры с плитами:

На природном газе:

На сжиженном газе (в том числе при групповых установках) и на твердом топливе:

Электрическими мощностью до 8,5 кВт

Квартиры повышенной комфортности с электрическими плитами мощностью до 10,5 кВт


Таблица 2.2 Удельная расчетная электрическая нагрузка электроприемников коттеджей


Удельная расчетная электрическая нагрузка электроприемников коттеджей

Потребители электроэнергии

Удельная расчетная электрическая нагрузка, кВт/коттедж, при числе коттеджей

Коттедж с плитами на природном газе

Коттеджи с плитами на природном газе и электрической сауной мощностью до 12 кВт

Коттеджи с электрическими плитами мощностью до 10,5 кВт

Коттеджи с электрическими плитами мощностью до 10,5 кВт и электрической сауной мощностью до 12 кВт


Кс - коэффициент спроса, зависящий от величины заявленной мощности в квартире.


В соответствии с "Временной инструкцией...” на предпроектных стадиях рекомендуется определять расчетные нагрузки по ориентировочным удельным нагрузкам в соответствии с табл. 2.3 в зависимости от различных уровней электрификации быта, а на стадии рабочего проектирования нагрузки уточняются по приведенной выше формуле.


В табл. 2.3 при определении удельных нагрузок приняты следующие мощности электроприемников, кВт: освещение 2,8, розеточная сеть 2,8, электроплиты 9-10,5, стиральная машина 2,2, посудомоечная машина 2,2, джакузи с подогревом 2,5, душевая кабина с подогревом 3, водонагреватель аккумуляционный 2, водонагреватель проточный 8-18, кондиционеры 3, бытовые электроприборы 4, теплые полы 1.


Таблица 2.3 Ориентировочные удельные нагрузки для домов I категории

Ориентировочные удельные нагрузки для домов I категории

Характеристика квартир

Удельная нагрузка, кВт/квартира при числе квартир

1 Дома с электроплитами до 9 кВт без саун, проточных водонагревателей и кондиционеров

600 и более

2 Дома с электроплитами до 10,5 кВт:

2.1 Без саун и проточных водонагревателей

водонагревателями мощностью до 12 кВт

2.2 Без саун, но с проточными

2.3 Без саун, но с проточными водонагревателями мощностью до 18 кВт

2.4 С саунами мощностью до 12 кВт, без проточных водонагревателей

2.5 С саунами мощностью до 6 кВт и проточными водонагревателями мощностью до 8 кВт

2.6 С саунами мощностью до 12 кВт и проточными водонагревателями мощностью до 12 кВт


Необходимо пояснить, что главной целью разработчиков указанных Нормативов и Инструкции было определение усредненных расчетных нагрузок, приведенных к вводу в жилые здания или коттеджные поселки исходя из принятых за базу исходных данных.


В СП31-110-2003 расчетную нагрузку для квартир с повышенной комфортностью рекомендуется определять в соответствии с заданием на проектирование или в соответствии с заявленной мощностью и коэффициентами спроса и одновременности.


Коэффициенты спроса для квартиры повышенной комфортности:


Заявленная мощность, кВт До 14 20 30 40 50 60 70 и более


Коэффициент спроса 0,8 0,65 0,6 0,55 0,5 0,48 0,45


Коэффициенты одновременности Ко для квартиры повышенной комфортно сти:


Число квартир 1-5 6 9 12 15 18


Коэффициент одновременности. . . 1 0,51 0,38 0,32 0,29 0,26


Число квартир 24 40 60 100 200 400 600 и более


Коэффициент одновременности. . . . 0,24 0,2 0,18 0,16 0,14 0,13 0,11



Расчетная нагрузка питающих линий, вводов и на шинах РУ-0,4 кВ ТП от электроприемников квартир повышенной комфортности Рр.кв кВт определяется по формуле:




где Ркв - нагрузка электроприемников квартир повышенной комфортности; n - число квартир; Ко - коэффициент одновременности для квартир повышенной комфортности.


В СП31-106-2002 для одноквартирных жилых домов расчетную нагрузку в случаях, если нет ограничений, также рекомендуется определять по заданию заказчика. Однако при ограничении возможностей энергоснабжения расчетную нагрузку электроприемников следует принимать не менее:


5,5 кВт - для домов без электрических плит;


8,8 кВт - для домов с электрическими плитами.


Если же общая площадь дома превышает 60 м2, расчетная нагрузка должна быть увеличена на 1% на каждый дополнительный 1 м2.


В реальных случаях площади квартир повышенной комфортности и коттеджей существенно отличаются от базовых и не имеют верхнего ограничения уровня электрификации быта.


Каждая отдельно взятая квартира или коттедж с приусадебными постройками представляет собой свой микромир, заполняемый не усредненными, а фактическими потребителями электроэнергии, номинальная мощность которых может существенно отличаться от принятых в нормативных материалах.


В удельных расчетных нагрузках принципиально не могло учитываться использование заказчиком различных, все более совершенных потребителей с длительным режимом работы (более 30 мин), постоянно появляющихся на рынке комфортности жилья и быта людей.


В табл. 2.4, составленной по данным нормативных документов, результатам анализа большого количества проектов, паспортным данным бытовых электроприборов, приведены рекомендуемые величины мощностей отдельных электроприемников и расчетные коэффициенты.


Определение расчетной величины Рр.р нагрузки групповых и питающих линий от электроприемников, подключаемых к розеткам, предполагается выполнять по рекомендации, приведенной в СП31-110-2003 для общежитий, по формуле:




где Руд - удельная мощность на одну розетку, при числе розеток до 100 принимаемая 0,1, свыше 100 - 0,06 кВт;


nр - число розеток;


Ко.р - коэффициент одновременности для сети розеток, определяемый в зависимости от числа



До 10 розеток. . . .1,0


Свыше 10 до 20 розеток. . . .0,9


Свыше 20 до 50 розеток. . . .0,8


Свыше 50 до 100 розеток. . . .0,7


Свыше 100 до 200 розеток. . .0,6


Свыше 200 до 400 розеток. . .0,5


Свыше 400 до 600 розеток. . .0,4


Свыше 650 розеток. . . .0,35


Основными расчетными коэффициентами являются: коэффициент спроса Кс, коэффициент использования Ки и коэффициент мощности cosф.


Под коэффициентом спроса по нагрузке понимается отношение расчетной электрической нагрузки к номинальной (установленной) мощности электроприемников:



где Рр - расчетная электрическая нагрузка, кВт (30-мин максимум); Ру - установленная мощность электроприемников, кВт.



Рекомендуемые величины мощностей отдельных электроприемников и расчетных коэффициентов

Наименование

электроприемников

Номинальная или установленная активная мощность

Расчетные коэффициенты

Примечание

Спроса Кс

использования Ки

Электрическое освещение гостиных

Светильники с лампами накаливания

Электрическое освещение жилых комнат (спален)

Электрическое освещение кабинетов, библиотек, игровых и т.п.

Электрическое освещение кухонь

Электрическое освещение холлов, коридоров и т.п.

Бытовая розеточная сеть (телерадиоаппаратура, холодильники, пылесосы, утюги, торшеры, бра, настольные лампы и пр.)

100 Вт/розетка

1 розетка на 6 м2 общей площади

Ки=0,7 - при числе розеток более 50;

Ки=0,8 - при числе розеток от 20 до 50;

Ки=0,9 - при числе розеток от 10 до 20;

Ки=1 - при числе розеток до 10

Электроплита

10,5 кВт/ппита

Стиральная машина

Посудомоечная машина

Джакузи с подогревом

Душевая кабина с подогревом

Водонагреватели аккумуляционные

Водонагреватели проточные

Кондиционеры

Электрокамины

Кухонные комбайны, кофеварки, электрочайники и т.п. (суммарно)

4-5 кВт/квартира

Теплый пол в жилой комнате, кухне, прихожей

Теплый пол в ванной, сауне, детской

Электрические отопительные котлы

Приборы электроотопления

Т епловентиляторы

Электрокалориферы

Газонокосилки

Погружные насосы

Персональные компьютеры

Под коэффициентом использования активной мощности одного или группы электроприемников понимается отношение фактически потребляемой мощности Р к номинальной мощности Рн:



Таблица 2.5 Исходные данные к примеру


Помещения

Площадь, м2

Устанавливаемые электробытовые приборы

Номинальная (установленная) мощность, кВт

Примечание

Электрическая плита

Табл. 2.4 п. 7

Посудомоечная машина

Табл. 2.4 п. 9

Холодильник

По паспортным данным

Кухонный комбайн

Табл. 2.4 п. 17

Электрическое освещение

Табл. 2.4 п. 4

1 розетка на ток 16 А, 4 розетки на ток 6 А

Табл. 2.4 п. 6

Холл и коридоры

Электрическое освещение

Табл. 2.4 п. 5

6 розеток на ток 6 А

Табл. 2.4 п. 6

Табл. 2.4 п. 11

Душ с электроподогревом

Табл. 2.4 п. 12

Теплый пол (4 м2)

Табл. 2.4 п. 19

Вентилятор

По паспортным данным

Электрическое освещение

Табл. 2.4 п. 5

4 розетки на ток 6 А

Табл. 2.4 п. 6

Душ с электроподогревом

Табл. 2.4 п. 12

Теплый пол (4 м2)

Табл. 2.4 п. 19

Вентилятор

По паспортным данным

Стиральная машина

Табл. 2.4 п. 8

Электрическое освещение

Табл. 2.4 п. 5

2 розетки на ток 6 А

Табл. 2.4 п. 6

Гостиная

Электрокамин

Табл. 2.4 п. 16

Кондиционер

Табл. 2.4 п. 15

Домашний кинотеатр

По паспортным данным

Электрическое освещение

Табл. 2.4 п. 1

10 розеток на ток 6 А

Табл. 2.4 п. 6

Спальня 1

Теплый пол (12 м2)

Табл. 2.4 п. 18

Кондиционер

Табл. 2.4 п. 15

Электрическое освещение

Табл. 2.4 п. 2

4 розетки на ток 6 А

Табл. 2.4 п. 6

Спальня 2

Теплый пол (10 м2)

Табл. 2.4 п. 18

Кондиционер

Табл. 2.4 п. 15

Электрическое освещение

Табл. 2.4 п. 2

4 розетки на ток 6 А

Табл. 2.4 п. 6

Детская комната

Теплый пол (20 м2)

Табл. 2.4 п. 18

Кондиционер

Табл. 2.4 п. 15

Персональный компьютер

Табл. 2.4 п. 26

Электрическое освещение

Табл. 2.4 п. 3

4 розетки на ток 6 А

Табл. 2.4 п. 6

Кондиционер

Табл. 2.4 п. 15

Персональный компьютер

Табл. 2.4 п. 26

Электрическое освещение

Табл. 2.4 п. 3

4 розетки на ток 6 А

Табл. 2.4 п. 6



В практических случаях, для ряда потребителей, таких как электроприемники розеточной сети и электрическое освещение коэффициент использования совпадает с коэффициентом одновременности Ко для этой группы потребителей.



Исходные данные:


Квартира общей площадью 200 м2 в многоквартирном доме. В квартире 5 комнат, кухня,


2 ванные комнаты, холл и коридоры. В табл. 2.5 приведены исходные данные по установленному бытовому электрооборудованию. Все потребители, за исключением электроплиты - однофазные.


Расчет нагрузок.


На основании данных табл. 2.5 составляем расчетную таблицу табл. 2.6, в которую включены расчетные коэффициенты спроса и использования, принятые по табл. 2.4.


Коэффициенты мощности приняты по данным, приведенным в §1.3.


В табл. 2.6 установленные мощности однотипных электроприемников (например, электрическое освещение, бытовая розеточная сеть, вентиляторы, теплые полы) просуммированы..


Таблица 2.6 Расчетная таблица к примеру №1


Наименование групп электропотребителей или отдельных электроприемников

Установленная (номинальная) мощность, кВт

Расчетные коэффициенты

Расчетная мощность

Примечание

спросаКс

использования Ки

мощности

cosф/tgф

активная

полная

Электрическое освещение

Приняты везде лампы накаливания

Бытовая розеточная сеть

Электрическая плита

Посудомоечная машина

Холодильник

Кухонный комбайн

Кондиционеры

Стиральная машина

Теплые полы

Душ с электроподогревом

Вентиляторы

Электрокамин

Домашний кинотеатр

Персональные компьютеры

Расчетную активную мощность (кВт) каждой группы электроприемников определяют по формуле




Полная мощность каждой группы электроприемников, кВ*А:






Учитывая, что все нагрузки, кроме электроплиты, однофазные, а питающая сеть трехфазная, пренебрегая неравномерностью загрузки фаз, на вводе в квартиру получим расчетный ток:



Выбираем для установки на вводе в квартиру автоматический выключатель трехфазный, четырехполюсный на номинальный ток 63 А.


В табл. 2.7 и 2.8 приведены рекомендуемые величины мощностей электропотребителей элитных квартир, коттеджей и отдельных построек на приусадебных участках. Рекомендуемые величины определены на основании анализа большого количества проектов, выполненных за последние годы.


В табл. 2.7 и 2.8 под установленной мощностью подразумевается суммарная мощность потребителей, длительность включения которых обычно превышает 1 час. Потребители эпизодического пользования учтены в суммарной мощности розеточной сети. В расчетной мощности учтены снижающие коэффициенты для отдельных потребителей и общий коэффициент 0,8, учитывающий одновременную работу всех потребителей.



Рекомендуемые мощности электропотребителей элитных квартир

Общая площадь элитной квартиры, м2

Плита

Примечание

установленная

расчетная

Кухня, гостиная, спальня, детская, санузел, холл

Электрическая

Кухня, гостиная, 2 спальни, детская, 2 санузла, холл

Электрическая

Кухня, гостиная, 2 спальни, 2 санузла, джакузи, детская, библиотека, холл

Электрическая

Кухня, гостиная, 2 спальни, 2

санузла, джакузи, детская, библиотека, зимний сад, холл

Электрическая

Рекомендуемые мощности электропотребителей коттеджей и отдельных построек на приусадебных участках

Общая площадь коттеджа или отдельных построек на участке, м2

Плита,

обогрев

Примечание

Установленная

Расчетная

Коттедж 150

Электроотопление, водонагреватели, погружной насос, теплые полы

Электрическая

Коттедж 250

Электрокотел, водонагреватели, погружной насос, теплые полы

Электрическая

Коттедж 300

Электрическая

Коттедж 400

Электрическая

Коттедж 500

Электрическая

Коттедж 600

Электрическая

Гостевой дом 100

Электрическая

Дровяная

Электроотопление, водонагреватели, теплые полы

Электрическая

Гараж на два автомобиля 40

Теплица с электроподогревом

Электрическое освещение территории и художественная подсветка

Площадь участка 0,2 га

2.2. Расчет токов короткого замыкания

Расчеты токов короткого замыкания (КЗ) выполняются для:


Выбора и проверки электрооборудования по электродинамической и термической стойкости;


Определения уставок и обеспечения селективности срабатывания защиты на вводах в квартиру или коттедж.


Это в первую очередь относится к выбору автоматических выключателей.


Основными документами, регламентирующими порядок расчета токов короткого замыкания, являются:


ГОСТ 28249-93 "Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ;


Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования - РД 153-34.0-20.527-98 РАО ЕЭС России, (2002 г.).


Различные методики расчетов токов КЗ достаточно подробно отражены в технической литературе. В настоящей работе, на основании опубликованных материалов, приведены только те данные, которые необходимы для расчетов токов КЗ при выполнении проектов электроснабжения элитного жилища, и, в первую очередь, для электроснабжения усадьб и коттеджей.


При расчетах токов КЗ в электроустановках до 1 кВ необходимо учитывать активные и индуктивные сопротивления всех элементов короткозамкнутого контура, включая силовые трансформаторы, трансформаторы тока, реакторы, токовые катушки автоматических выключателей и проводники. Необходимо также учитывать:


Изменение активного сопротивления проводников в короткозамкнутой цепи вследствие их нагрева при коротком замыкании;


Сопротивление электрической дуги в месте короткого замыкания.


При составлении эквивалентных схем замещения параметры элементов исходной расчетной схемы следует приводить к ступени напряжения сети, на которой находится точка КЗ.


При расчетах токов КЗ допускается:


Максимально упрощать всю внешнюю сеть по отношению к месту КЗ, представив ее системой бесконечной мощности с нулевым сопротивлением;


Принимать коэффициенты трансформации трансформаторов равными отношению средних номинальных напряжений тех ступеней напряжения, которые связывают трансформаторы. Значения средних номинальных напряжений: 10,5; 6,3; 0,4; 0,23 кВ.


В электроустановках, получающих питание непосредственно от сети энергосистемы, принято считать, что понижающие трансформаторы подключены к источнику неизменного по амплитуде напряжения через эквивалентное индуктивное сопротивление системы. Значение этого сопротивления (хс), приведенное к ступени низшего напряжения сети, рассчитываются по формуле (мОм)




где Uср.н.н - среднее номинальное напряжение сети, подключенной к обмотке низшего напряжения трансформатора, В;


Uсрв.н - среднее номинальное напряжение сети, к которой подключена обмотка высшего напряжения трансформатора, В;


Iкв.н = In0.в.н - действующее значение периодической составляющей тока при трехфазном КЗ у выводов обмотки высшего напряжения трансформатора, кА;


Sк - условная мощность короткого замыкания у выводов обмотки высшего напряжения трансформатора, МВ^А.


При отсутствии указанных данных эквивалентное индуктивное сопротивление системы допускается рассчитывать по формуле (мОм):



где Iот.ном - номинальный ток отключения выключателя, установленного на стороне высшего напряжения понижающего трансформатора, кА.


В случаях, когда понижающий трансформатор подключен к сети энергосистемы через реактор, воздушную или кабельную линию (длиной более 1 км), необходимо учитывать не только индуктивные, но и активные сопротивления этих элементов.


Расчеты токов КЗ в электроустановках напряжением до 1 кВ рекомендуется производить в именованных единицах.


Активное и индуктивное сопротивления понижающего трансформатора (RT, XT) приведенное к ступени низшего напряжения сети, рассчитывается по формулам, мОм:




где Sт.ном - номинальная мощность трансформатора, кВ*А; Рк.з - потери короткого замыкания в трансформаторе, кВт; Uн.н.ном - номинальное напряжение обмотки низшего напряжения трансформатора, кВ; Uк - напряжение короткого замыкания трансформатора, %.


В табл. 2.9 приведены активные и индуктивные сопротивления трансформаторов, приведенные к напряжению 0,4 кВ.


Таблица 2.9 Сопротивление понижающих трансформаторов с вторичным напряжением 0,4 кВ


Сопротивление понижающих трансформаторов с вторичным напряжением 0,4 кВ

Номинальная

мощность,

соединения

Напряжение короткого

замыкания

Сопротивления, мОм

прямой последовательности

нулевой последовательности

току однофазного КЗ

активное

индуктивное

активное

индуктивное

активное

индуктивное



где R0ш и Х0ш - удельное активное и реактивное сопротивление шинопровода, Ом/м;


lш - длина шинопровода, м.


Сопротивления комплектных шинопроводов заводского изготовления типов ШРА и ШМА приведены в табл.2.10.


Таблица 2.10 Значения сопротивлений комплектных шинопроводов


Значения сопротивлений комплектных шинопроводов

шинопровода

Номинальный ток, А

Сопротивление фазы, мОм/м

Сопротивление нулевого проводника, мОм/м

активное

индуктивное

активное

индуктивное

При отсутствии данных сопротивление шинопровода от трансформатора к автоматическому выключателю можно принять ориентировочно: Rш = 0,5 мОм, Хш = 0,25 мОм.


Активное и индуктивное сопротивления воздушных линий (ВЛ):


Активное сопротивление (Ом)



где р - удельное сопротивление материала провода, для меди р = 0,0178 Ом*мм2/м, для алюминия р = 0,0294.


l - длина линии, м;


S - сечение провода, мм2.


Индуктивное сопротивление на фазу (мОм/м) определяется по формуле:




где а - расстояние между проводниками, мм;


dпp - диаметр проводника, мм.


Активное и индуктивное сопротивления кабелей с алюминиевыми и медными жилами приведены в табл. 2.11-2.14, воздушных линий - в табл. 2.15.


Индуктивное сопротивление петли фаза-нуль (мОм/м) при фазном и нулевом проводниках выполненных из круглых проводов одинакового сечения и проложенных параллельно, определяется по формуле:




Сопротивления петли фаза-нуль без учета заземляющих устройств приведены в табл. 2.16, полные сопротивления петли фаза-нуль воздушных линий и кабелей приведены в табл. 2.17.


Активные и индуктивные сопротивления аппаратов, устанавливаемых в сетях напряжением до 1 кВ приведены в табл. 2.18 и 2.19. Приведенные значения сопротивлений автоматических выключателей включают в себя сопротивления токовых катушек расцепителей и переходные сопротивления подвижных контактов.


Таблица 2.11 Активные и индуктивные сопротивления кабеля с алюминиевыми жилами в непроводящей оболочке

Активные и индуктивные сопротивления кабеля с алюминиевыми жилами в непроводящей оболочке

Сечение кабеля,

Сопротивление трех и четырехжильного кабеля в непроводящей оболочке, мОм/м

Прямая последовательность

Нулевая последовательность

Следует учитывать, что каждый автомат включается в цепь последовательно через два разъемных контакта. Для приближенного учета переходного сопротивления электрических контактов принимают: Rк = 0,1 мОм - для контактных соединений кабелей; Rк = 0,01 мОм - для шинопроводов; Rк - 1,0 мОм - для коммутационных аппаратов.


Ниже приведены переходные активные сопротивления неподвижных контактных соединений, мОм:


Таблица 2.12 Активные и индуктивные сопротивления кабеля с алюминиевыми жилами в алюминиевой оболочке

Сечение кабеля,

Сопротивление трех и четырехжильного кабеля в алюминиевой оболочке, мОм/м

Прямая последовательность

Нулевая последовательность

Таблица 2.13 Активные и индуктивные сопротивления кабеля с алюминиевыми жилами в свинцовой оболочке


Активные и индуктивные сопротивления кабеля с алюминиевыми жилами в свинцовой оболочке

Сечение кабеля,

Сопротивление трех и четырехжильного кабеля в свинцовой оболочке, мОм/м

Прямая последовательность

Нулевая последовательность

Таблица 2.14 Активные и индуктивные сопротивления кабеля с медными жилами в стальной оболочке


Активные и индуктивные сопротивления кабеля с медными жилами в стальной оболочке

Сечение кабеля,

Прямая последовательность

Нулевая последовательность

При расчетах токов КЗ учитываются активное и индуктивное сопротивления первичных обмоток всех многовитковых измерительных трансформаторов тока (Кт.а, Хта), которые имеются в цепи КЗ. Параметры некоторых многовитковых трансформаторов тока приведены в табл. 2.19. Активным и индуктивным сопротивлением одновитковых трансформаторов (на токи более 500 А) при расчетах токов КЗ можно пренебречь.


Активное сопротивление дуги приведено в табл. 2.20.


Рассмотрим принципы расчета токов трехфазного и однофазного короткого замыкания. Под трехфазным КЗ подразумевается короткое замыкание между тремя фазами в электрической системе. Под однофазным КЗ подразумевается короткое замыкание на землю силовых элементов в трехфазной электрической системе с глухозаземленной нейтралью, при котором с землей соединяется только одна фаза.


Расчет токов трехфазного КЗ заключается в определении:


Начального действующего значения периодической составляющей тока КЗ;


Апериодической составляющей тока КЗ в начальный и произвольный момент времени;


Ударного тока КЗ.


При питании потребителя от энергосистемы через понижающий трансформатор начальное действующее значение периодической составляющей тока КЗ (7к0) без учета подпитки от электродвигателей рассчитывается по формуле (кА)




где Uср.н.н - среднее номинальное напряжение сети, в которой произошло КЗ, В;


- полное сопротивление цепи КЗ, мОм;


х1кз - суммарное активное и индуктивное сопротивления прямой последовательности цепи КЗ, равные соответственно



где хc - эквивалентное индуктивное сопротивление системы до понижающего трансформатора, приведенное к ступени низшего напряжения, мОм;


гт и хт - активное и индуктивное сопротивления прямой последовательности понижающего трансформатора, мОм;


rр и хр - активное и индуктивное сопротивления реакторов, мОм (по данным завода изготовителя);


rтт и хтт - активное и индуктивное сопротивления первичных обмоток трансформатора тока, Ом; гАВ и хАВ - активное и индуктивное сопротивления автоматических выключателей, мОм, ключая сопротивления токовых катушек расцепителей и переходные сопротивления подвижных контактов;


гш и хш - активное и индуктивное сопротивления шинопроводов, мОм;


rк - суммарное активное сопротивление различных контактов, мОм;


гкб,гвл, и хкб, хвл - активные и индуктивные сопротивления кабельных и воздушных линий, мОм; rД - активное сопротивление дуги в месте КЗ, мОм.


Таблица 2.15 Активное и индуктивное сопротивление проводов воздушных линий и кабелей (на напряжение до 500 В)


Активное и индуктивное сопротивление проводов воздушных линий и кабелей (на напряжение до 500 В)

Сопротивление, мОм/м

активное

индуктивное

алюминий

провода, открыто проложенные

с поясной бумажной изоляцией

провода в трубах, кабели с резиновой и ПВХ изоляцией

Таблица 2.16 Значения сопротивления петли фаза-нуль без учета заземляющих устройств


Значения сопротивления петли фаза-нуль без учета заземляющих устройств

Сечение фазного провода, мм2

Активное (числитель) и индуктивное (знаменатель) сопротивление петли, мОм, при сечении нулевого провода, мм2

Таблица 2.17 Полные сопротивления петли фаза-нуль воздушных линий и кабелей, мОм/м


Полные сопротивления петли фаза-нуль воздушных линий и кабелей, мОм/м

Сечение провода, мм2

Кабель или провод

Провода на роликах и изоляторах

Провода воздушных линий

обратного

алюминиевый

алюминиевые

алюминиевые

Таблица 2.18 Сопротивления включения токовых катушек ресцепителей и переходные сопротивления подвижных контактов автоматических выключателей и разъемных контактов рубильников


Сопротивления включения токовых катушек ресцепителей и переходные сопротивления подвижных контактов автоматических выключателей и разъемных контактов рубильников

Номинальный ток, А

Сопротивления автоматических выключателей при 65 С, мОм

Сопротивление разъемных контактов рубильников, мОм

активное

индуктивное

Таблица 2.19 Сопротивление первичных обмоток многовитковых трансформаторов тока


Сопротивление первичных обмоток многовитковых трансформаторов тока

Коэффициент трансформации трансформатора тока

Сопротивление, мОм,

первичных обмоток многовитковых трансформаторов тока класса точности

Таблица 2.20 Значении активного сопротивления дуги


Апериодическая составляющая тока КЗ равна амплитуде периодической составляющей тока в начальный момент КЗ, т.е.:



Апериодическая составляющая тока КЗ в произвольный момент времени определяется по формуле:




где t - время, с;


Та - постоянная времени затухания апериодической составляющей тока КЗ, с, равная




где ХЕ и RE - результирующие индуктивное и активное сопротивления цепи КЗ, мОм; юс - синхронная угловая частота напряжение сети, рад/с.


Ударный ток трехфазного КЗ в электроустановках с одним источником энергии (энергосистема или автономный источник) рассчитываются по формуле:



где - ударный коэффициент, определяемый по кривым, приведенным на






Рис. 2.1


Та - постоянная времени затухания


апериодической составляющей тока КЗ;







Пример расчета трехфазного КЗ


Определить ток КЗ на вводе в дом (коттедж).


Поселок питается от распределительного пункта (РП) энергосистемы по ВЛ-10 кВ через трансформатор 10/0,4 кВ, мощностью 400 кВ*А.


Электроснабжение коттеджа осуществляется кабельной линией 0,4 кВ длиной 300 м.


Кабель с медными жилами сечением 4х50 мм2 (рис. 2.2).


Мощность КЗ на шинах РП-10 Sк.з=200 МВ*А.


Расчетная схема и схема замещения представлены на рис. 2.3.


Учитывая, что длина линии 10 кВ от РП 10 кВ системы до трансформаторной подстанции менее 1 км, то в соответствии с ГОСТ 28249-93 в расчетах токов КЗ линия может не учитывается.




Рис. 2.2





Рис. 2.3

Определение сопротивлений схемы замещения


Сопротивление системы:




Сопротивление трансформатора 400 кВА (табл. 2.9):



Переходное сопротивление электрических контактов (см. ГОСТ 28249-93 п.2.5), Rк = 0,1 мОм;


Сопротивление автоматических выключателей (табл. 2.18)



Сопротивление трансформатора тока 300/5А 1 (см. табл. 2.19)



Сопротивление КЛ-0,4 кВ, сечением 4x50, длиной 300 м (табл. 2.14)



Сопротивление контура КЗ:


активное:



реактивное:



Полное сопротивление цепи КЗ:



Начальное значение периодической составляющей тока трехфазного КЗ:




Апериодическая составляющая тока КЗ в начальный момент КЗ:



где Iа0 - наибольшее начальное значение апериодической составляющей тока КЗ.


Апериодическая составляющая в произвольный момент времени t рассчитывается по формуле:




где t - время, с


Та- постоянная времени затухания апериодической составляющей тока КЗ;



в нашем случае




апериодическая составляющая затухает примерно через 0,002 с и ее можно не учитывать.


Ударный ток КЗ:



где куд. = 1 - по кривой на рис. 2.1 из соотношения




Расчет токов однофазных коротких замыканий в сетях до 1 кВ выполняется для обеспечения надежной работы защиты при минимальных значениях тока КЗ в конце защищаемой линии.


Расчетная точка однофазного КЗ - электрически наиболее удаленная точка участка сети, защищаемая выключателем.


В соответствии с требованиями "Правил устройства электроустановок” (ПУЭ) для надежного отключения поврежденного участка сети наименьший расчетный ток короткого замыкания должен превышать номинальный ток плавкой вставки или номинальный ток расцепителя автоматического выключателя, защищающего этот участок сети, с обратнозависимой от тока характеристикой не менее чем в 3 раза.


Если автоматический выключатель имеет только мгновенно действующий расцепитель (отсечку), то наименьший расчетный ток короткого замыкания должен превышать уставку отсечки не менее чем в 1,4 раза.


По сравнению с расчетом токов трехфазных КЗ, расчет токов однофазных КЗ является более сложным, т.к. в этом случае помимо учета сопротивления в прямой цепи короткого замыкания (в фазе) необходим учет сопротивления и в цепи зануления (в обратной цепи). Когда для зануления используются стальные трубы, обрамления кабельных каналов и другие строительные конструкции, в решении вопроса о сопротивлении цепи короткого замыкания появляется много неопределенностей.


Кроме того, однофазные короткие замыкания относятся к несимметричным, что вносит в расчет дополнительные сложности.


Расчет токов однофазных КЗ можно выполнять методом симметричных составляющих или по сопротивлению петли фаза-нуль.


Метод симметричных составляющих предложен для упрощения расчетов несимметричных КЗ. Сущность этого метода состоит в замене несимметричной системы токов трехфазной сети при однофазном коротком замыкании тремя симметричными системами: прямой, обратной и нулевой последовательности. Симметричные системы являются достаточно простыми для теоретического расчета. При практическом использовании этого метода часто возникают затруднения из-за отсутствия справочных материалов по сопротивлениям нулевой последовательности для принятого варианта выполнения цепи зануления.


При расчете токов однофазного КЗ по сопротивлению петли фаза-нуль используется закон Ома, но встречаются те же затруднения с исходными данными.


Оба метода должны давать один и тот же результат и теоретически могут быть выведены один из другого. Точность расчета определяется только точность исходных данных.


В ГОСТ 28249-93 в основу расчета токов однофазных КЗ положен метод симметричных составляющих, который более подробно рассматривается ниже.


Расчет однофазного КЗ методом симметричных составляющих производят по формуле:




где I1 - действующее значение периодической составляющей тока однофазного КЗ, кА;


Uл - среднее номинальное (линейное) напряжение сети, В;


R1E - суммарное активное сопротивление фазной цепи короткого замыкания (сопротивление прямой последовательности), мОм;


R0E - суммарное активное сопротивление цепи КЗ для тока нулевой последовательности (сопротивление нулевой последовательности), мОм;


Х1E - суммарное индуктивное сопротивление фазной цепи короткого замыкания (сопротивление прямой последовательности), мОм;


Х0E - суммарное индуктивное сопротивление цепи КЗ для тока нулевой последовательности (сопротивление нулевой последовательности), мОм.


Сопротивления обратной последовательности равны сопротивлениям прямой последовательности и в приведенной формуле учитываются коэффициентом 2 перед R1E и Х1Е.


Суммарное активное и суммарное индуктивное сопротивления фазной цепи короткого замыкания определяются по формулам:




где r1Т и Х1Т - сопротивления прямой последовательности понижающего трансформатора, мОм;


r1Л и Х1Л - сопротивления прямой последовательности линии (фазного проводника), мОм;


rТТ и ХТТ - сопротивления первичных обмоток трансформаторов тока, мОм;


rА и ХА - сопротивления автоматических выключателей, мОм;


rК - суммарное активное сопротивление различных контактов в фазной цепи КЗ, мОм;


rД - активное сопротивление электрической дуги в месте КЗ, мОм.


Суммарное активное и суммарное индуктивное сопротивления цепи КЗ для тока нулевой последовательности определяются по формулам:




где r0Т и Х0Т - сопротивления нулевой последовательности понижающего трансформатора, мОм; r0Л и Х0Л - сопротивление нулевой последовательности линии (сопротивления шинопроводов, проводов, кабелей с учетом цепи зануления), мОм;


rТТ, ХТТ, rА, ХА, rК и rД - сопротивления фазной цепи КЗ, мОм.


Сопротивление нулевой последовательности линии равно сопротивлению фазного проводника плюс утроенное сопротивление цепи зануления:



где rН и ХН - эквивалентные сопротивления цепи зануления (нуля) от точки КЗ до трансформатора с учетом всех зануляющих элементов (нулевого провода, оболочки кабеля, стальных труб и т.д.), мОм.


Увеличение в 3 раза сопротивления цепи зануления для тока нулевой последовательности поврежденной фазы вызвано тем, что в соответствии с методом симметричных составляющих через цепь зануления замыкаются равные по значению токи нулевой последовательности всех трех фаз. Таким образом:



При определении минимальных значений токов однофазных КЗ для проверки чувствительности защиты рекомендуется учитывать увеличение активного сопротивления проводников в результате нагревания их током короткого замыкания. Для этого сопротивления проводников сечением до 16 мм2 (включительно) рекомендуется приводить к температуре 1200С, сопротивления проводников сечением 25-95 мм2 - к температуре 1450С, сопротивления проводников сечением 120-140 мм2 - к температуре 950С. Такие (ориентировочные) значения температуры проводников в конце КЗ получены в результате расчетов с учетом реальных время-токовых характеристик аппаратов защиты и при условии адиабатического процесса нагрева жил проводников. Государственным стандартом ГОСТ 2824+-89 допускается принимать для всех сечений значение температурного коэффициента электрического сопротивления равным 1,5, что соответствует температуре 1450С. Но проводники крупных сечений до такой температуры за время КЗ практически не нагреваются.


Температурный коэффициент для приведения сопротивления проводника при 200С к сопротивлению при конечной температуре вычисляется по формуле:



где Oкон. - температура жилы проводника в конце КЗ, 0С.


Сопротивление проводника при конечной температуре




где r20 - сопротивление проводника при температуре 20 0С.

Пример расчета тока однофазного КЗ.


Для схемы по рис. 2.2 определить ток однофазного КЗ на вводе в коттедж.


Расчет проводим методом симметричных составляющих.


При питании электроустановки от системы через понижающий трансформатор начальное значение периодической составляющей тока однофазного КЗ рассчитывается по формуле (кА):




где r1E , х1E - активное и индуктивное суммарные сопротивления прямой последовательности относительно точки КЗ. В нашем случае (см. расчет трехфазного КЗ) - r1E =137,5 мОм, X1Е =45,4 мОм;


r0E , XOE. - активное и индуктивное суммарные сопротивления нулевой последовательности относительно точки КЗ.


Эти сопротивления равны:




где r0Т, X0Т - активное и индуктивное сопротивления нулевой последовательности понижающего трансформатора;


rТТ, XТТ - активное и индуктивное сопротивления трансформатора тока;


rкв, ХКВ - активное и индуктивное сопротивления автоматических выключателей;


гК - сопротивление контактов.


Для рассматриваемого примера:




По табл. 2.9 сопротивления нулевой последовательности трансформатора 400 кВА составляют: Х0Т = 149 мОм, r0Т = 55,6 мОм.





где r’0 и x’0 - активное и индуктивное сопротивления 1 м медного кабеля сечением 4x50 мм2 (табл. 2.14);


Таким образом:






ГЛАВА СЕДЬМАЯ

РАСЧЕТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ

7.1. Короткое замыкание в симметричной трехфазной цепи промышленного предприятия

Определение токов КЗ зависит от требований к точности результа­тов, от исходных данных и назначения расчета. В общем случае токи КЗ определяются переходными процессами в электрических цепях, изучаемых теоретическими основами электротехники . Расчет токов КЗ в электрических сетях промышленных предприятий несколько отличается от расчетов, осуществляемых в электрических сетях и си­стемах. Это объясняется возможностью не выделять (не учитывать) турбо - и гидрогенераторы электростанций, подпитку от нескольких источников питания, работу разветвленных сложных кольцевых схем, свойства дальних ЛЭП, действительные коэффициенты трансфор­мации.

Для выбора аппаратов и проводников, для определения воздействия на несущие конструкции при расчете токов КЗ исходят из следующих положений. Все источники, участвующие в питании рассматриваемой точки, работают с номинальной нагрузкой. Синхронные машины имеют автоматические регуляторы напряжения и устройства быстродействующей форсировки возбуждения. Короткое замыкание наступает в такой момент времени, при котором ток КЗ имеет наибольшее значение. Электродвижущие силы всех источников питания совпадают по фазе. Расчетное напряжение каждой ступени принимают на 5% выше номи­нального напряжения сети (средние номинальные напряжения), а имен­но: 515; 340; 230; 154; 115; 37; 24; 18; 15,75; 13,8; 10,5; 6,3; 3,15; 0,69; 0,525; 0,4; 0,23; О,133 кВ.

Учитывают влияние на токи КЗ присоединенных к данной сети син­хронных компенсаторов, синхронных и асинхронных электродвигате­лей. Влияние асинхронных электродвигателей на токи КЗ не учитывают при единичной мощности электродвигателей до 100 кВт, если электро­двигатели отдалены от места КЗ одной ступенью трансформации, а также при любой мощности, если они отделены от места КЗ двумя или более ступенями трансформации или если ток от них может поступать к месту КЗ только через те элементы, через которые проходит основной ток КЗ от сети и которые имеют существенное сопротивление (линии, трансформаторы и т. п.).

В электроустановках напряжением выше 1 кВ учитывают индуктив­ные сопротивления электрических машин, силовых трансформаторов и автотрансформаторов, реакторов, воздушных и кабельных линий, токопроводов. Активное сопротивление следует учитывать только для воздушных линий с проводами малых площадей сечений и стальными проводами, а также для протяженных кабельных сетей малых сечений с большим активным сопротивлением.

В электроустановках напряжением до 1 кВ учитывают индуктивные и активные сопротивления всех элементов короткозамкнутой цепи (переходные контакты аппаратов, токовые катушки, переходные со­противления, несимметрию фаз и т. д.). При этом следует отметить, что влияние сопротивления энергосистемы на результаты расчета токов КЗ на стороне до 1 кВ невелико. Поэтому в практических расчетах со­противлением на стороне 6-10 кВ часто пренебрегают, считая его рав­ным нулю. В случае питания электрических сетей напряжением до 1 кВ от понижающих трансформаторов при расчете токов КЗ следует исхо­дить из условия, что подведенное к трансформатору напряжение не­изменно и равно его номинальному значению.

Требования к расчету токов КЗ для релейной защиты и системной автоматики несколько отличаются от требований к расчету для выбора аппаратов и проводников. Требования к точности расчетов токов КЗ для выбора заземляющих устройств невысоки из-за низкой точности методов определения других параметров, входящих в расчет заземляю­щих устройств (например, удельного сопротивления земли). Поэтому для выбора заземляющих устройств допускается определять значения токов КЗ приближенным способом.

Расчетная схема для определения токов КЗ представляет собой схе­му в однолинейном исполнении, в которую введены генераторы, ком­пенсаторы, синхронные и асинхронные электродвигатели, оказывающие влияние на ток КЗ, а также элементы системы электроснабжения (ли­нии, трансформаторы, реакторы), связывающие источники электро­энергии с местом КЗ. При составлении расчетной схемы для выбора электрических аппаратов и проводников и определения при этом токов КЗ следует исходить из предусматриваемых для данной электроуста­новки условий длительной ее работы. При этом не нужно учитывать кратковременные видоизменения схемы этой электроустановки, напри­мер при переключениях. Ремонтные и послеаварийные режимы работы электроустановки к кратковременным изменениям схемы не относятся. Кроме того, расчетная схема должна учитывать перспективу развития внешних сетей и генерирующих источников, с которыми электрически связывается рассматриваемая установка (не менее чем на 5 лет от за­планированного срока ввода в эксплуатацию).

По расчетной схеме составляют схему замещения, в которой транс­форматорные связи заменяют электрическими. Элементы системы электроснабжения, связывающие источники электроэнергии с местом КЗ, вводят в схему замещения сопротивлениями, а источники энер­гии - сопротивлениями и ЭДС. Сопротивления и ЭДС схемы замеще­ния должны быть приведены к одной ступени напряжения (основная ступень). В практических расчетах за основную удобно принимать ступень, где определяются токи КЗ. Параметры элементов схемы замещения можно выражать в именованных или относительных едини­цах.

При составлении схемы замещения в относительных единицах зна­чения ЭДС и сопротивлений схемы выражают в долях выбранных зна­чений базовых величин. В качестве базовых величин принимаются ба­зовая мощность S б в расчетах обычно S б = 100 MB∙А) и базовое на­пряжение ..gif" width="81" height="48"> 7.1)

Расчетные формулы для определения сопротивления элементов схемы в именованных и в относительных единицах (EN-US">S

ном номинальное напряжение U ном, сверхпереходное индуктивное сопротивление , постоянная времени затухания апериодической составляющей тока трехфазного КЗ . Перечисленные параметры, кроме ЭДС, даются в паспортных данных машины, а в случае отсутствия могут быть взяты из справоч­ных таблиц.

Электродвижущая сила Е " (фазное значение) определяется прибли­женным выражением

где https://pandia.ru/text/79/406/images/image010_27.gif" width="28" height="24">- номинальный ток; j - угол между током и напряжением в доаварийном режиме.

Значения коэффициента k , равного ЭДС Е" в относительных еди­ницах, приведены ниже.

Средние значения и Е" при нормальных условиях, отн. ед.:

Типы машины

Синхронный компенсатор

Синхронный электродвигатель

Асинхронный электродвигатель

Если имеется источник питания, заданный суммарной мощностью генераторов того или иного типа S S и результирующим сопротивле­нием для начального момента времени x с, то такой источник может рассматриваться как эквивалентный генератор с номинальной мощ­ностью S ном S и сверхпроводным сопротивлением x с.

Если источником питания является мощное энергетическое объеди­нение, заданное результирующим сопротивлением x с, током КЗ I к или мощностью , то можно считать, что такое объеди­нение является энергосистемой, удаленной от шин потребителя на сопротивление x с.

Когда необходимые данные об энергосистеме отсутствуют, расчеты производят по предельному току отключения I отк выключателей, установленных на шинах связи с энергосистемой. Ток отключения приравнивается току КЗ I к, и отсюда определяется сопротивле­ние x с.

Определение сопротивлений системы в именованных и в относитель­ных единицах:

(7.4)

где https://pandia.ru/text/79/406/images/image016_14.gif" width="28" height="24"> - мощность отключения выключателя по каталогу, установлен­ного на присоединении подстанции предприятия к системе; https://pandia.ru/text/79/406/images/image018_10.gif" width="25" height="25 src=">.

Электродвигатели напряжением выше 1 кВ рассматриваются анало­гично генераторам. Сверхпереходная ЭДС Е" определяется как E " = kU ном. Коэффициент k соответствует Е " и берется из таблицы.

Сверхпереходное сопротивление в паспорте электродвигателя в отличие от генераторов не указывается и определяется по кратности его пускового тока:

где - номинальный ток двигателя; - кратность пускового тока к номинальному.

Сопротивление синхронных и асинхронных двигателей в именован­ных и относительных единицах

(7.5)

Обобщенной нагрузкой принято называть смешанную нагрузку, состоящую из нагрузок на освещение, питание электродвигателей, пе­чей, выпрямителей и т. п. Средние расчетные параметры такой нагруз­ки даны в таблице и отнесены к среднему номинальному напряжению ступени трансформации в месте подключения нагрузки и полной мощ­ности нагрузки (MB∙А). Определение сопротивления обобщенной на­грузки производится аналогично (7.5).

К расчетным паспортным параметрам двухобмоточного трансформа­тора (рис. 7.1, а, б) относят: номинальную мощность , номинальное напряжение обмоток https://pandia.ru/text/79/406/images/image024_6.gif" width="41 height=24" height="24"> потери КЗ P к или отношение х/r . Сопротивления

(7.6)

Рис 7.1. Двухобмоточный трансформатор и его схема замещения (а , б ); трехобмоточный трансформатор (в , г ); двухобмоточный трансформатор с расщеп­ленной обмоткой низшего напряжения (д , е )

Поясним параметр . Между обмотками трансформатора имеется только магнитная связь. Эквивалентное электрическое сопротивление первичной и вторичной обмоток трансформатора определяется из опы­та КЗ, состоящего в следующем: вторичная обмотка трансформатора закорачивается, после чего трансформатор нагружается номинальным током, затем на выводах первичной обмотки производятся замеры па­дения напряжения ∆U и потерь КЗ P к в трансформаторе.

По данным опыта вычисляется напряжение КЗ как относительное падение напряжения в сопротивлении трансформатора при прохожде­нии по нему номинального тока:

где z т - эквивалентное электрическое сопротивление обмоток транс­форматора. Следовательно, соответствует сопротивлению транс­форматора в относительных единицах при номинальных условиях.

Индуктивное сопротивление трансформатора с учетом напряжения КЗ u к и потерь короткого замыкания https://pandia.ru/text/79/406/images/image030_5.gif" width="135" height="31">

Поскольку активное сопротивление трансформаторов сравнительно невелико, обычно принимают

Если для вычисления ударного тока КЗ возникает необходимость в определении активного сопротивления трансформатора r т, что ре­комендуется для трансформаторов мощностью 630 кВ∙А и менее, то это можно сделать на основании потерь P к, взятых из каталога, или по кривым х /r :

(7.7)

Для расчета трехобмоточных трансформаторов (рис. 7.1, в, г) долж­ны быть даны: номинальная мощность ; номинальные напряжения обмоток https://pandia.ru/text/79/406/images/image034_5.gif" width="157" height="24">потери КЗ P к или отношение х /r . Номи­нальной мощностью трехобмоточного трансформатора является номинальная мощность наиболее мощной его обмотки; к этой мощности приводятся относительные сопротивления трансформатора и потери КЗ.

Чтобы определить напряжения КЗ, опыт проводится 3 раза - между обмотками В-С, В-Н и С-Н, причем каждый раз третья обмотка, не участвующая в опыте, остается разомкнутой. Из постановки опыта КЗ очевидно, что напряжение КЗ между обмотками можно выразить в виде суммы напряжений КЗ этих обмоток, например

Относительные базисные сопротивления определяются для каждой ветви схемы замещения:

(7.8)

Значения в именованных единицах определяются аналогично пер­вой формуле (7.6).

Потерями КЗ трехобмоточного трансформатора называются мак­симальные из возможных в трансформаторе потерь https://pandia.ru/text/79/406/images/image038_4.gif" width="36" height="24 src="> указываются в каталоге на трансформатор.

К расчетным параметрам (рис. 7.1, д , е ) относят: номинальную мощ­ность обмотки высшего напряжения https://pandia.ru/text/79/406/images/image040_4.gif" width="64" height="27"> (мощность = 0,5); номинальные напряжения обмоток ; напряжения КЗ между обмотками EN-US">P к или отношение х /r .

Выражения для напряжений короткого замыкания каждой обмотки трансформатора аналогичны (7.8) и (7.6):

(7.9)

Определение активных сопротивлений расщепленных трансформа­торов производится аналогично определению этих сопротивлений для трехобмоточных трансформаторов. В отличие от трехобмоточных транс­форматоров в каталогах на расщепленные трансформаторы даются по­тери КЗ для обмоток В-Н1 (Н2) , отнесенные к мощности обмотки низшего напряжения .

Для определения активных сопротивлений трансформатора, если потери КЗ не известны, можно применять кривые х /r .

Расчетными параметрами реактора являются: номинальное индук­тивное сопротивление в омах или относительных единицах x ном или x ном %; м номинальное напряжение U ном; номинальный ток I ном; но­минальные потери ∆Р или отношение х /r .

В случае использования сдвоенных реакторов индуктивное сопротив­ление задается для ветви реактора и помимо перечисленных параметров указывается коэффициент связи между ветвями k св, обычно k св= 0,5 (рис. 7.2).

Сопротивление реактора относительное и приведенное к базовому

(7.10)

где х р - номинальное реактивное сопротивление реактора, Ом, U с - напряжение сети в точке установки реактора и реактора сдвоенного:

(7.11)

Известно, что сдвоенный реактор конструктивно отличается от обыч­ного выводом средней точки обмотки, разделяющим обмотку реактора на две ветви.

Расчет активного сопротивления реакторов производится по номи­нальным потерям или по отношению х /r . При использовании потерь на фазу реактора расчет выполняется таким образом: для одинарных реакторов ; для сдвоенных реакторов

Сопротивления линий электропередачи в расчетных схемах характе­ризуются удельными сопротивлениями на 1 км длины. Индуктивное сопротивление линии зависит от расстояния между проводами и радиуса провода. Сопротивление линии электропередачи в именованных и от­носительных единицах

(7.12)

где x о - среднее сопротивление 1 км линии; l - длина линии.

Рис. 7.2. Сдвоенный реактор (а ) и его схема замещения (б )

В качестве средних расчетных значений индуктивного сопротивления на фазу следует принимать, Ом/км:

Воздушная линия:

330 кВ (два провода на фазу)

Трехжильный кабель:

Одножильный маслонаполненный 110кВ

Активное сопротивление должно учитываться в случаях, если его суммарное значение составляет более одной трети индуктивного сопро­тивления всех элементов схемы замещения до точки КЗ, т. е. когда Алюминий" href="/text/category/alyuminij/" rel="bookmark">алюминиевых про­водов подсчитано следующим образом:

где l - длина линий, м; q - сечение провода, м2; g - удельная прово­димость, (МОм∙м) -1, равная для меди g = =53, для алюминия g = 32.

7.2. Вычисление значений токов короткого замыкания в электроустановках свыше 1 кВ

Условиями, характеризующими трехфазное КЗ, являются симмет­ричность схемы и равенство нулю междуфазных и фазных напряжений в месте КЗ:

Таким образом, разность потенциалов цепи короткого замыкания от места подключения генерирующего источника до точки КЗ равня­ется ЭДС данного источника. Это дает возможность определить началь­ное действующее значение периодической слагающей по закону Ома. В случае питания КЗ от энергосистемы расчетное выражение для опре­деления периодической слагающей приобретает вид

(7.14)

где https://pandia.ru/text/79/406/images/image056_2.gif" width="137" height="33">- результирующее сопротивление цепи КЗ; x с - результирующее сопро­тивление (индуктивное) энергосистемы относительно места ее подклю­чения в расчетной схеме; x в, r в - соответственно индуктивное и актив­ное сопротивления от места подключения энергосистемы до точки КЗ.

Без учета активного сопротивления периодический ток

(7.15)

где https://pandia.ru/text/79/406/images/image059_1.gif" width="131" height="28"> (7.16)

где I к - ток в рассматриваемой точке КЗ, приведенный к напряже­нию U ср.

В относительных единицах, если источником питания в расчетной схеме сети является энергосистема, ЭДС системы и напряжение на ее шинах равны: отсюда

Без учета активного сопротивления

(7.18)

При питании КЗ от энергосистемы в результате неизменности на­пряжения на шинах системы амплитуды периодической слагающей то­ка короткого замыкания во времени не изменяются и ее действующее значение в течение всего процесса КЗ также остается неизменным: Определение периодической слагающей в дан­ном случае для любого момента времени КЗ должно производиться по расчетным выражениям (7.14) и (7.15) для вычисления начального значения тока.

При питании КЗ от генератора с автоматическим регулятором воз­буждения (АРВ) или без него амплитуды и действующие значения пе­риодической слагающей в процессе КЗ изменяются по значению. Для практических расчетов периодической слагающей в различные момен­ты КЗ обычно используют графоаналитический метод с применением расчетных кривых, иначе - метод расчетных кривых.

При расчетах токов трехфазного КЗ для выбора аппаратов и провод­ников принято считать, что максимальное мгновенное значение тока КЗ или ударный ток наступает через 0,01 с с момента возникновения короткого замыкания.

Для схем с последовательно включенными элементами ударный ток подсчитывается по выражению

где T a - постоянная времени затухания апериодической составляющей тока КЗ; k уд - ударный коэффициент для времени t = 0,01 с.

Постоянная времени T a определяется выражением

где 0 " style="margin-left:-68.35pt;border-collapse:collapse;border:none">

Трансформаторы мощностью, MB А

РеакторыкВ на ток, А:

1500 и выше

Воздушные линии

Кабели 6-10 кВ сечением 3 XX 185 мм2

Ударный ток синхронного и асинхронного электродвигателей опре­деляется следующим образом:

где k y - ударный коэффициент цепи двигателя. Если сопротивление внешней цепи электродвигателя невелико EN-US">k y берется в готовом виде; если внешнее со­противление подлежит учету, то k y следует определять аналитически. Если расчетная схема в результате преобразования может быть пред­ставлена как две или несколько независимых генерирующих ветвей, ударный ток в месте КЗ определяется как сумма ударных токов этих ветвей.

Действующее значение полного тока КЗ It в произвольный момент времени равно

где I пt - действующее значение периодической слагающей тока КЗ в произвольный момент времени (по расчетным кривым); I аt - дей­ствующее значение апериодической слагающей тока КЗ в тот же мо­мент времени.

Действующее значение тока КЗ за первый период от начала про­цесса определяется по формуле

(7.23)

где k у - ударный коэффициент, определяемый по кривой на рис. 1.3. Во всех случаях, когда не учитывается активное сопротивление цепи КЗ, обычно принимают k у =1,8. Для удаленных точек КЗ с учетом активного сопротивления k у определяется по экспоненциальной за­висимости отношения времени КЗ к постоянной Т а.

Условная мощность КЗ для произвольного момента времени (для выбора выключателя по отключающей способности) определяется по формуле

где U ср - среднее номинальное напряжение сети для точки, в которой рассчитывается ток КЗ.

https://pandia.ru/text/79/406/images/image073_1.gif" width="77" height="29">

Учет подпитки мест короткого замыкания от электродвигателей производится, если двигатели непосредственно связаны с точкой короткого замыкания электрически и находятся в зоне малой удаленности. Токи короткого замыкания от двигателей, отдаленных от точки короткого замыкания ступенью трансформации или через обмотки сдвоенного реактора, как правило, не учитываются.

Если двигатели подключены к точке короткого замыкания кабель­ными линиями длиной не более 300 м, начальное значение периодиче­ской составляющей тока короткого замыкания определяется без учета внешнего сопротивления:

где - сверхпереходная ЭДС (см. § 7.1); I ном - номинальный ток двигателя.

Значение периодической составляющей тока короткого замыкания в момент отключения выключателя:

от асинхронного двигателя

где Т р - расчетная постоянная времени затухания периодической составляющей тока короткого замыкания двигателя; при отсутствии данных можно принять Т = 0,04-0,06 с; от синхронного двигателя

где https://pandia.ru/text/79/406/images/image078_1.gif" width="21" height="24"> равен 0,7 при t =0,1 с и 0,6 при 0,25 с). Если тип двигателя не известен, то значение можно опре­делить по усредненной кривой, как для двигателя серии СДН.

Апериодическая составляющая и ударный ток от двигателей

(7.25)

При отсутствии данных можно принять Т а = 0,04 с для асинхронных двигателей и Т а = 0,06 с для синхронных.

7.3. Короткое замыкание в сетях напряжением до 1 кВ

Расчет токов КЗ в цеховых электрических сетях переменного тока отличается от расчета в сетях 1 кВ и выше. В сетях до 1 кВ наряду с ин­дуктивным учитываются и активные сопротивления элементов цепи КЗ: силовых трансформаторов", кабельных линий, шинопроводов, пер­вичных обмоток многовитковых трансформаторов тока, токовых катушек автоматических выключателей, различных контактных соеди­нений (разъемных и втычных контактов аппаратов и т. д.), дуги в месте КЗ. Общее активное сопротивление цепи КЗ r S может быть больше 30% х S , что влияет на полное сопротивление z S и ток КЗ.

Из-за удаленности места КЗ в сети до 1 кВ от источника питания (x *р > 3) периодическая составляющая сверхпереходного тока ока­зывается равной установившемуся значению тока I ∞, т. е. периодиче­ская составляющая тока КЗ неизменна во времени. Физически это объясняется тем, что КЗ в сети до 1 кВ из-за большого индуктивного сопротивления цехового трансформатора воспринимается в сети 6-10 кВ как небольшое приращение нагрузки, нечувствительное в сети 110 кВ.

Сопротивление системы, отнесенное к ее мощности, состоит из последовательно соединенных элементов: генераторов (x г ³ 0,125), понижающих трансформаторов (x пов. тр ³ 0,105), линий электропере­дачи (x л ³ 005), понижающих трансформаторов районных подстан­ций и (или) ГГШ предприятия (x пон. тр ³ 0,105).

Таким образом, результирующее сопротивление энергосистемы в относительных единицах без цехового трансформатора в общем слу­чае будет не менее 0,4.

При индуктивном сопротивлении цехового трансформатора, отне­сенном к мощности системы,

и суммарном сопротивлении цепи КЗ более 3(x *р > 3) имеем

(7.26)

Если = 1000 кВ∙A, > 5,5, получим S c > 47 MB∙А, что всегда выполнимо для современных систем электроснабжения.

Из анализа соотношения (7.26) очевидно, что суммарное сопротив­ление цепи тока КЗ определяется сопротивлением цехового транс­форматора. Это определяет следующие особенности режимов работы цеховых трансформаторных подстанций ЗУР: 1) параллельная работа двух цеховых трансформаторов практически удваивает мощности КЗ, что повышает требования к устойчивости электрических сетей и коммутационной аппаратуры на стороне до 1 кВ; 2) рост единичной мощности цеховых трансформаторов (применение трансформаторов 1600 и 2500 кВ∙А) ведет к увеличению токов КЗ в сети до 1 кВ и предъявляет более жесткие требования к цеховым сетям с точки зре­ния их устойчивости к действию тока КЗ.

Расчет для отдельных элементов цепи КЗ осуществляется по пас­портным или справочным данным, и ведут его в именованных единицах, выражая сопротивление элементов в миллиомах. Сопротивление шинопроводов и кабельных линий определяют через активные r 0 и индук­тивные х 0 сопротивления фазы (мОм/м), принимаемые по справоч­ным данным.

Полное, активное и индуктивное сопротивления цехового трансфор­матора, приведенные к ступени низшего напряжения, выражаются фор­мулами, мОм,

(7.27)

(7.28)

(7.29)

где https://pandia.ru/text/79/406/images/image083_1.gif" width="40" height="25">.gif" width="39" height="25"> - номинальное напряжение на стороне низкого напряжения трансформатора, кВ.

Переходное сопротивление в сети до 1 кВ можно представить в виде двух составляющих:

где https://pandia.ru/text/79/406/images/image091_0.gif" width="33" height="25"> - сопротивление дуги в месте КЗ. Суммарное сопротивление

где https://pandia.ru/text/79/406/images/image094_0.gif" width="20" height="24 src="> - сопротивление автоматических выключателей, состоящее из сопротивления катушек расцепителей и переходного сопротивления контактов; https://pandia.ru/text/79/406/images/image096_0.gif" width="109" height="25">

где Е д - напряженность электрического поля в месте горения дуги, которую можно принять равной 1,5 В/мм; l д - длина дуги, мм (рав­на удвоенному расстоянию а между фазами сети в месте КЗ); I к - ток трехфазного КЗ.

В практических расчетах можно пользоваться значениями R пер, приведенными в табл. 7.1 для характерной схемы сети до 1 кВ (рис. 7.4).

При аппроксимировании результатов, приведенных в табл. 7.1, по­лучена формула для определения суммарного переходного сопротив­ления при КЗ в точках К2 -К4:

(7.30)

где 0 " style="margin-left:-37.05pt;border-collapse:collapse;border:none">

Мощность, трансформатора, кВ∙А

Значения переходных сопротивлений R пер, мОм, в точках КЗ

K 1

K 2

K 3

K 4

Примечание. В числителе приведены значения сопротив­лений при магистральной схеме, в знаменателе - при радиальной.

Рис. 7.4. Характерная схема цеховой электриче­ской сети для расчета токов КЗ

При расчете токов КЗ в цепь короткого замыкания вводятся также индуктивные сопротивления трансформаторов тока и катушек максимального тока автомати­ческих выключателей, значения которых принимают по справочным или заводским данным.

Вычисление токов короткого замыка­ния осуществляется для выбора и провер­ки токоведущих устройств и аппаратов цеховой сети на устойчивость действию КЗ. Независимо от режима нейтрали в це­ховых сетях наиболее тяжелым режимом является трехфазное КЗ.

Преобразование схемы замещения чаще всего сводится к определе­нию суммарного сопротивления цепи КЗ путем сложения последова­тельно соединенных активных и индуктивных сопротивлений n эле­ментов, так как сети до 1 кВ имеют одностороннее питание:

Ток трехфазного КЗ находится по формуле

Влияние асинхронных двигателей, подключенных непосредственно к месту КЗ, можно ориентировочно учесть увеличением значения I к на 4I вд (I вд - суммарный номинальный ток двигателей). При этом I к увеличивается не более чем на 10%.

Ударный ток трехфазного КЗ определяется по формулам (7.19), (7.25). Значение I к в сетях до 1 кВ меньше, чем в сетях выше 1 кВ, из-за большого активного сопротивления цепи КЗ, которое вызывает быстрое затухание апериодической составляющей тока КЗ. Значение ударного коэффициента можно определить по специальным кривым или расчетом в зависимости от отношения x S / r S или постоянной вре­мени затухания апериодической составляющей Т а = x S / (w r S ).

В приближенных расчетах при определении i у на шинах цеховых ТП мощностью кВ∙А можно принимать k у=1,3, а для более удаленных точек сети k у» 1. Влияние асинхронных двигателей, подклю­ченных непосредственно к месту КЗ, на i у можно ориентировочно учесть увеличением значения найденного i у на (4-7)I дв.

Особую сложность составляет расчет однофазных токов КЗ в сетях до 1 кВ с глухозаземленной нейтралью, когда ток однофазного КЗ может оказаться меньше значений, достаточных для надежного срабаты­вания защиты цеховых сетей (автоматических выключателей или предо­хранителей). В таких сетях ток однофазного замыкания, равный утро­енному току нулевой последовательности, определяется по формуле

где https://pandia.ru/text/79/406/images/image112.gif" width="45" height="24 src="> - суммарные активное и индуктивное сопротивления нулевой последовательности.

Ток однофазного замыкания на землю для надежного срабатывания защиты в установках, не опасных по взрыву, должен не менее чем в 3 раза превышать номинальный ток соответствующей плавкой вставки.

При определении токов КЗ в сетях напряжением до 1 кВ следует учитывать, что цеховые ТП выпускаются комплектными и их оборудо­вание (шкафы высокого и низкого напряжения с установленными в них выключателями, трансформаторами тока, шинами и другими эле­ментами) рассчитано на длительный нормальный режим работы и отве­чает требованиям устойчивости к токам КЗ в сети низкого напряжения трансформатора данной мощности. Если в цеховой электрической сети применяются комплектные магистральные и распределительные шинопроводы, то подбор их по номинальному току позволяет, как правило, удовлетворить и требованиям устойчивости к действию тока КЗ.

Расчет токов КЗ следует выполнять в случаях совместного питания силовых и осветительных нагрузок, если в осветительной сети примене­ны осветительные шинопроводы, питающиеся от распределительных шинопроводов. Динамическая стойкость шинопроводов типа ШОС составляет 5 кА, что значительно ниже стойкости шинопроводов типа ШРА (15-35 кА). Если цеховая электрическая сеть состоит из кабелей или проводов в трубах, то для выбора и проверки аппаратов напря­жением до 1 кВ расчет токов КЗ в таких сетях является обяза­тельным.

Вопросы для самопроверки

1. Назовите особенности упрощения расчетов токов КЗ в промыш­ленных электрических сетях.

2. Рассмотрите рис. 1.1 как расчетную схему и составьте на основании рисунка схему замещения для расчета токов КЗ.

3. Запомните расчетные формулы для определения сопротивления элементов электрической цепи.

4. Укажите преимущественную область использования именованной системы расчетов токов КЗ.

6. Укажите особенности расчетов токов КЗ в сети до 1 кВ.

7. Поясните физический смысл мощности короткого замыкания на разных уровнях системы электроснабжения, действующего и ударного значений токов КЗ.

Расчет проводится для выбора и проверки уставок релейной защиты и автоматики или проверки параметров оборудования.

Введем ряд допущений, упрощающих расчет и не вносящих существенных погрешностей:

  • 1. Линейность всех элементов схемы;
  • 2. Приближенный учёт нагрузок;
  • 3. Симметричность всех элементов за исключением мест короткого замыкания;
  • 4. Пренебрежение активными сопротивлениями, если X/R>3;
  • 5. Токи намагничивания трансформаторов не учитываются;

Погрешность расчетов при данных допущениях не превышает 2ч5%.

Расчет токов короткого замыкания упрощается при использовании схемы замещения. Расчет токов КЗ проводим в именованных единицах.

Расчетные точки короткого замыкания:

К1…К5 - на шинах ТП.

Рисунок 6.1. Схема замещения 10 кВ

Параметры системы:

где U cp - среднее напряжение, кВ;

I кз - ток короткого замыкания на шинах РП-9.

ЭДС системы:

Параметры кабельной линии:

R КЛ = r 0 l, (6.3)

X КЛ = x 0 l, (6.4)

R w3 = 0,208 1,95 = 0,4056 Ом

X w3 = 0,079 1,95 = 0,154 Ом

Параметры линий приведены в таблице 6.1

Таблица 6.1. Параметры линий

х 0 , Ом/км

АПвП-10-3Ч150

АПвП-10-3Ч150

АПвП-10-3Ч120

АПвП-10-3Ч150

АПвП-10-3Ч95

АПвП-10-3Ч150

АПвП-10-3Ч150

Расчёт токов КЗ выполняется для напряжения той стороны, к которой приводятся сопротивления схемы.

где - полное суммарное эквивалентное сопротивление от источника питания до расчётной точки КЗ, Ом.

Установившееся значение тока при двухфазном КЗ определяется по значению тока трёхфазного КЗ:

Ударный ток:

где к уд - ударный коэффициент.

Расчёт токов КЗ производим без учёта подпитки со стороны нагрузки.

Расчет токов КЗ сведен в таблицу Л1 ПРИЛОЖЕНИЕ Л

6.2 Расчет токов короткого замыкания 0,4 кВ

Расчет токов КЗ выполняется с целью проверки коммутационной аппаратуры на динамическую стойкость, чувствительность и селективность действия защит. Пример расчета приведем для ТП №1 для дома №1 по улице Железнодорожная.

Рисунок 6.2. Исходная схема для расчета токов короткого замыкания

Рисунок 6.3. Схема замещения

Найдем параметры схемы замещения.

Система С:;

Трансформатор: S н.тр =1000 кВА; U к =5,5%; ДР к =10,2 кВт.

Индуктивное сопротивление системы:

где I КЗ - ток КЗ на шинах ВН КТП.

Сопротивления трансформатора:

Сопротивления линий:

R W = 0,13·80=10,4 мОм;

X W = 0,077·80=6,16 мОм;

Сопротивления автоматических выключателей:

R QF1 =0,74 мОм; X QF1 =0,55 мОм;

R QF2 =1,8 мОм; X QF2 =0,86 мОм.

Переходные сопротивления неподвижных контактных соединений:

R к1 =0,6 мОм;

R к2 =0,75 мОм.

Сопротивление дуги:

где - падение напряжения на дуге, кВ;

Максимальный ток КЗ, А. из таблицы 7.3

где - напряженность в стволе дуги, при

Длина дуги.

где; - суммарные индуктивное и активное сопротивления прямой последовательности до точки КЗ со стороны системы.

Минимальный ток КЗ определяется по выражению:

Ударный ток определяется по выражению:

где - ударный коэффициент.

где - частота сети, .

Для точки К1:

X УК1 = 1,19+ 8,65 + 0,55 = 10,39 мОм;

R УК1 = 1,632 + 0,74+0,6 = 2,97 мОм;

Расстояние между фазами проводника а для ТП с трансформаторами на 1000 кВА составляет 60 мм, т.к. а > 50 мм, то L Д = а = 60 мм.

Найдем ударный ток:

Для точки К2:

X УК2 = 10,39 + 0,86 + 6,16 = 17,41 мОм;

R УК2 = 2,97 + 1,8 + 10,4 +0,675 = 15,845 мОм;

Расстояние между фазами проводника а составляет 2,8 мм, т.к. а < 5 мм, то L Д = 4а = 11,2 мм.

Найдем ударный ток:

Токи однофазного КЗ в сетях с напряжением до 1кВ, как правило, являются минимальными. По их величине проверяется чувствительность защитной аппаратуры.

Действующее значение периодической составляющей тока однофазного КЗ определяется по формуле:

где - полное сопротивление питающей системы, трансформатора, а также переходных контактов точки однофазного КЗ;

Полное сопротивление петли фаза-ноль от трансформатора до точки КЗ.

где, - соответственно индуктивные и активные сопротивления прямой и обратной последовательности силового трансформатора;

Соответственно индуктивное и активное сопротивления нулевой последовательности силового трансформатора.

где - удельное сопротивление петли фаза-нуль элемента;

Длина элемента.

Значение тока однофазного КЗ в точке К2:

Z П = 0,36·80=28,8 мОм;

7. Выбор и проверка коммутационной и защитной аппаратуры

7 .1 Выбор выключателей нагрузки

Выключатели выбираются по номинальному значению тока и напряжения, роду установки и условиям работы, конструктивному исполнению и отключающим способностям.

Выбор выключателей производится:

по напряжению

U ном? U сети, ном, (7.1)

Где U ном - номинальное напряжение выключателя, кВ;

U сети, ном - номинальное напряжение сети, кВ.

2) по длительному току

I ном? I раб, max , (7.2)

где I ном - номинальный ток выключателя, А

I раб, max - максимальный рабочий ток, А

3) по отключающей способности:

где i a,r - апериодическая составляющая тока КЗ, составляющая времени до момента расхождения контактов выключателя;

i a,норм - номинальный апериодический ток отключения выключателя;

Допускается выполнение условия:

где в норм - нормативное процентное содержание апериодической составляющей в токе отключения;

ф - наименьшее время от начала короткого замыкания до момента расхождения контактов;

ф = ф з, мин + t соб, (7.5)

где ф з, мин = 1,5 с - минимальное время действия защит;

t соб - собственное время отключения выключателя.

4) на электродинамическую стойкость выключатель проверяется по сквозному предельному току короткого замыкания:

где I пр, скв - действительное значение предельного сквозного тока короткого замыкания;

Начальное значение периодической составляющей тока короткого замыкания в цепи выключателя.

5) на термическую стойкость:

выключатель проверяется по тепловому импульсу:

где - предельный ток термической стойкости, равный предельному току отключения выключателя;

Нормативное время протекания тока термической стойкости.

4с при номинальном напряжении до 35 кВ

3с при номинальном напряжении свыше 110 кВ

Проектом предусматриваем комплектацию РУ 10 кВ распределительного пункта стационарными камерами одностороннего обслуживания типа КСО с вакуумными выключателями типа ВВ/TEL:

  • - номинальное напряжение 10 кВ;
  • - номинальный ток 630 А;
  • - номинальный ток отключения 12,5 кА;
  • - ток динамической стойкости 20 кА;
  • - ток термической устойчивости для промежутка времени 4 сек. 20 кА;
  • - время отключение до погасания дуги не более 0.075 сек., tа = 0.075 сек.

Выбор выключателей приведен в таблице 7.1.

Таблица 7.1. Параметры выключателей, установленных на стороне 10 кВ

Здравствуйте, уважаемые читатели и посетители сайта «Заметки электрика».

У меня на сайте есть статья про . Я в ней приводил случаи из своей практики.

Так вот чтобы минимизировать последствия от подобных аварий и инцидентов, необходимо правильно выбирать электрооборудование. Но чтобы его правильно выбрать, нужно уметь рассчитывать токикороткого замыкания.

В сегодняшней статье я покажу Вам как можно самостоятельно рассчитать ток короткого замыкания, или сокращенно ток к.з., на реальном примере.

Я понимаю, что многим из Вас нет необходимости производить расчеты, т.к. обычно этим занимаются, либо проектанты в организациях (фирмах), имеющих лицензию, либо студенты, которые пишут очередной курсовой или дипломный проект. Особенно понимаю последних, т.к. сам будучи студентом (в далеком двух тысячном году), очень жалел, что в сети не было подобных сайтов. Также данная публикация будет полезна энергетикам и для поднятия уровня саморазвития, или чтобы освежить в памяти когда-то прошедший материал.

Кстати, я уже приводил . Кому интересно, то переходите по ссылочке и читайте.

Итак, перейдем к делу. Несколько дней назад у нас на предприятии случился пожар на кабельной трассе около цеховой сборки №10. Выгорел практически полностью кабельный лоток со всеми там идущими силовыми и контрольными кабелями. Вот фото с места происшествия.

Сильно вдаваться в «разбор полетов» я не буду, но у моего руководства возник вопрос о срабатывании вводного автоматического выключателя и соответствие его для защищаемой линии. Простыми словами скажу, что их интересовала величина тока короткого замыкания в конце вводной силовой кабельной линии, т.е. в том месте, где случился пожар.

Естественно, что никакой проектной документации у цеховых электриков по расчетам токов к.з. на эту линию не нашлось, и мне пришлось самому производить весь расчет, который я выкладываю в общий доступ.

Сбор данных для расчета токов короткого замыкания

Силовая сборка №10, около которой случился пожар, питается через автоматический выключатель А3144 600 (А) медным кабелем СБГ (3х150) от понижающего трансформатора №1 10/0,5 (кВ) мощностью 1000 (кВА).

Не удивляйтесь, у нас на предприятии еще много действующих подстанций с изолированной нейтралью на 500 (В) и даже на 220 (В).

Скоро буду писать статью о том, как в сеть 220 (В) и 500 (В) с изолированной нейтралью . Не пропустите выход новой статьи — подпишитесь на получение новостей.

Понижающий трансформатор 10/0,5 (кВ) питается силовым кабелем ААШв (3х35) с высоковольтной распределительной подстанции № 20.

Некоторые уточнения для расчета тока короткого замыкания

Несколько слов хотелось бы сказать про сам процесс короткого замыкания. Во время короткого замыкания в цепи возникают переходные процессы, связанные с наличием в ней индуктивностей, препятствующих резкому изменению тока. В связи с этим ток к.з. во время переходного процесса можно разделить на 2 составляющие:

  • периодическая (появляется в начальный момент и не снижается, пока электроустановка не отключится от защиты)
  • апериодическая (появляется в начальный момент и быстро снижается до нуля после завершения переходного процесса)

Ток к.з. я буду расчитывать по РД 153-34.0-20.527-98.

В этом нормативном документе сказано, что расчет тока короткого замыкания допускается проводить приближенно, но при условии, что погрешность расчетов не составит больше 10%.

Расчет токов короткого замыкания я буду проводить в относительных единицах. Значения элементов схемы приближенно приведу к базисным условиям с учетом коэффициента трансформации силового трансформатора.

Цель — это А3144 с номинальным током 600 (А) на коммутационную способность. Для этого мне нужно определить ток трехфазного и двухфазного короткого замыкания в конце силовой кабельной линии.

Пример расчета токов короткого замыкания

Принимаем за основную ступень напряжение 10,5 (кВ) и задаемся базисной мощностью энергосистемы:

    базисная мощность энергосистемы Sб = 100 (МВА)

    базисное напряжение Uб1 = 10,5 (кВ)

    ток короткого замыкания на сборных шинах подстанции №20 (по проекту) Iкз = 9,037 (кА)

Составляем расчетную схему электроснабжения.

На этой схеме указываем все элементы электрической цепи и их . Также не забываем указать точку, в которой нам нужно найти ток короткого замыкания. На рисунке выше я ее забыл указать, поэтому объясню словами. Она находится сразу же после низковольтного кабеля СБГ (3х150) перед сборкой №10.

Затем составим схему замещения, заменив все элементы вышеприведенной схемы на активные и реактивные сопротивления.

При расчете периодической составляющей тока короткого замыкания допускается активное сопротивление кабельных и воздушных линий не учитывать. Для более точного расчета активное сопротивление на кабельных линиях я учту.

Зная, базисные мощности и напряжения, найдем базисные токи для каждой ступени трансформации:

Теперь нам нужно найти реактивное и активное сопротивление каждого элемента цепи в относительных единицах и вычислить общее эквивалентное сопротивление схемы замещения от источника питания (энергосистемы) до точки к.з. (выделена красной стрелкой).

Определим реактивное сопротивление эквивалентного источника (системы):

Определим реактивное сопротивление кабельной линии 10 (кВ):

  • Хо — удельное индуктивное сопротивление для кабеля ААШв (3х35) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, том 2, табл. 61.11 (измеряется в Ом/км)

Определим активное сопротивление кабельной линии 10 (кВ):

  • Rо — удельное активное сопротивление для кабеля ААШв (3х35) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, том 2, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим реактивное сопротивление двухобмоточного трансформатора 10/0,5 (кВ):

  • uк% — напряжение короткого замыкания трансформатора 10/0,5 (кВ) мощностью 1000 (кВА), берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, табл. 27.6

Активным сопротивлением трансформатора я пренебрегаю, т.к. оно несоизмеримо мало по отношению к реактивному.

Определим реактивное сопротивление кабельной линии 0,5 (кВ):

  • Хо — удельное сопротивление для кабеля СБГ (3х150) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим активное сопротивление кабельной линии 0,5 (кВ):

  • Rо — удельное сопротивление для кабеля СБГ (3х150) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим общее эквивалентное сопротивление от источника питания (энергосистемы) до точки к.з.:

Найдем периодическую составляющую тока трехфазного короткого замыкания:

Найдем периодическую составляющую тока двухфазного короткого замыкания:

Результаты расчета токов короткого замыкания

Итак, мы рассчитали ток двухфазного короткого замыкания в конце силовой кабельной линии напряжением 500 (В). Он составляет 10,766 (кА).

Вводной автоматический выключатель А3144 имеет номинальный ток 600 (А). Уставка электромагнитного расцепителя у него выставлена на 6000 (А) или 6 (кА). Поэтому можно сделать вывод, что при коротком замыкании в конце вводной кабельной линии (в моем примере по причине пожара) и отключил поврежденный участок цепи.

Еще полученные значения трехфазного и двухфазного токов можно применить для выбора уставок релейной защиты и автоматики.

В этой статье я не выполнил расчет на ударный ток при к.з.

P.S. Вышеприведенный расчет был отправлен моему руководству. Для приближенного расчета он вполне сгодится. Конечно же низкую сторону можно было рассчитать более подробно, учитывая сопротивление контактов автоматического выключателя, контактных соединений кабельных наконечников к шинам, сопротивление дуги в месте замыкания и т.п. Об этом я как-нибудь напишу в другой раз.

Если Вам нужен более точный расчет, то можете воспользоваться специальными программами на ПК. Их в интернете множество.

Не обходится без расчетов. Одним из них является расчет токов короткого замыкания. В статье рассмотрим пример расчета в сетях 0,4кВ. Файл с примером расчета в Word вы сможете скачать ближе к концу статьи, а также выполнить расчет самостоятельно не покидая сайта (в конце статьи есть онлайн-калькулятор).

Исходные данные: ГРЩ здания запитан от трансформаторной подстанции с двумя трансформаторами по 630кВА.
где:
Е C – ЭДС сети;
R т, X т, Z т – активное, реактивное и полное сопротивления трансформатора;
R к, X к, Z к – активное, реактивное и полное сопротивления кабеля;
Z ц – сопротивление петли фаза-нуль для кабеля;
Z ш – сопротивление присоединения шин;
K1 – точка короткого замыкания на шинах ГРЩ.

Параметры трансформатора:
Номинальная мощность трансформатора S н = 630 кВА,
Напряжение короткого замыкания трансформатора U к% = 5,5%,
Потери короткого замыкания трансформатора P к = 7,6 кВт.

Параметры питающей линии:
Тип, число (N к) и сечение (S) кабелей АВВГнг 2x (4×185),
Длина линии L = 208 м

X т = 13,628 мОм



R т = 3,064 мОм

R к = 20,80 мОм

X к = 5,82 мОм

Сопротивление энергосистемы:
X c = 1,00 мОм

Суммарное реактивное сопротивление участка:
X Σ =X c +X т +X к =20,448 мОм

Суммарное активное сопротивление участка:
R Σ =R т +R к =23,864 мОм

Полное суммарное сопротивление:

R Σ =31,426 мОм



I K3 =7,35 кА (Icn)

i У =10,39 кА (Icu)



I K1 =4,09 кА

Чтобы не считать каждый раз вручную на калькуляторе и переносить цифры в Microsoft Word, я реализовал эти расчет прямо в Word. Теперь надо только ответить на вопросы, которые он задаёт. Вот так это выглядит:

Весь расчет занял меньше минуты.

Чтобы скачать пример расчета ТКЗ в Word, нажмите на кнопку:

Онлайн-калькулятор для расчет токов короткого замыкания

Для тех, кому нужно быстро рассчитать токи короткого замыкания, сделал калькулятор прямо на сайте. Теперь можете посчитать токи КЗ онлайн. Щелкайте переключателям, двигайте ползунки, выбирайте значения из списка — всё моментально автоматически пересчитается.

Удельные сопротивления меди и алюминия в онлайн-калькуляторе приняты в соответствии с рекомендациями ГОСТ Р 50571.5.52-2011, Часть 5-52 (1,25 удельного сопротивления при 20°С):

  • удельное сопротивление меди - 0,0225 Ом·мм/м
  • удельное сопротивление алюминия - 0,036 Ом·мм/м.

Если возможностей калькулятора вам недостаточно (нужно несколько участков кабелей разного сечения, у вас другие трансформаторы или просто расчет должен быть оформлен в Word), то смело нажимайте кнопку и заказывайте.