ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Устройство и работа газобаллонной системы питания. Газовый двигатель внутреннего сгорания – меняет ли топливо принцип действия? В моторном отсеке автомобиля устанавливают

Cистема питания двигателя от газобаллонной установки


Двигатели газобаллонных автомобилей работают на газообразном топливе, запас которого находится в баллонах, установленных на автомобилях.

Применение газобаллонных автомобилей дает возможность использовать имеющиеся в нашей стране значительные ресурсы дешевых горючих газов. Мощность двигателя и грузоподъемность газобаллонных автомобилей такие же, как у базовых автомобилей с карбюраторными двигателями. Поэтому эксплуатация газобаллонных автомобилей технически и экономически целесообразна.

Топливо для газобаллонных автомобилей. В качестве топлива для их двигателей используют смеси сжиженных (точнее, легкосжижае-мых) газов, получаемых из попутного нефтяного и природного газов.

Для газобаллонных автомобилей промышленность выпускает смеси пропана и бутана технических (СПБТ) двух составов:
СПБТЗ - зимнюю, содержащую не менее 75% пропана и не более 20% бутана;
СПБТЛ - летнюю, содержащую не менее 34% пропана и не более 60% бутана.

Помимо пропана и бутана, в состав топлива входят также метан, этан, этилен, пропилен, бутилен, пентан и другие, общее содержание которых в смеси составляет 5…6%.

Пропановые фракции (пропан и пропилен) обеспечивают необходимое давление в газовом баллоне автомобиля. Бутановая составляющая (нормальный бутан, изобутан, бутилен, изобутилен) - наиболее калорийный и легкосжижаемый компонент сжиженных газов.

Важнейшими свойствами сжиженных газов, определяющими их пригодность для использования в качестве топлива для газобаллонных автомобилей, являются: теплота сгорания пропана - 45,7 (10972), бутана - 45,2 (10845), бензина - 43,8 (10500) МДж/кг (ккал/кг); плотность жидкого пропана - 0,509, а бутана - 0,582 кг/м3; октановое число у пропана - 120, у бутана - 93.

Газ не должен содержать механических примесей, водорастворимых кислот, щелочей, смол и других вредных примесей.

Давление насыщенных паров для смеси сжиженных газов колеблется в пределах от 0,27 МПа (2,7 кгс/см2) при температуре - 20 °С до 1,6 МПа (16 кгс/см2) при температуре +45 °С.

Сжиженные газы обладают большим коэффициентом объемного расширения. Поэтому баллоны следует заполнять газом не более чем на 90% их объема. Остальные 10% составляет объем паровой подушки, без которой даже незначительное повышение температуры газа приводит к резкому увеличению давления в баллоне (примерно 0,7 МПа, или 7 кгс/см2 на ГС повышения температуры сжиженного газа).

Газобаллонная установка. Отечественная автомобильная промышленность выпускает газобаллонные грузовые автомобили ЗИЛ-138, ГАЗ-53-07 и автобусы ЛАЗ-695П и ЛИАЗ-677Г. Все эти автомобили отличаются от базовых моделей ЗИЛ-130, ГАЗ-53А, ЛАЗ-695Н и ЛИАЗ-677 наличием газобаллонной установки, а также модифицированным газовым двигателем, имеющим более высокую, чем базовый карбюраторный двигатель, степень сжатия.

Для обеспечения возможности передвижения автомобиля при неисправности газобаллонной установки или отсутствии газа в системе питания имеется карбюратор, на котором двигатель может развивать мощность, достаточную для движения автомобиля с полной нагрузкой со скоростью 30…40 км/ч, и бензиновый бак. Длительно работать на бензине не разрешается.

Схема газобаллонной установки автомобиля ЗИЛ-138 показана на рис. 32. В нее входят: газовый баллон с арматурой, магистральный вентиль, испаритель газа, газовый фильтр, редуктор, манометр, смеситель, воздушный фильтр, газопроводы. Для работы на бензине имеются карбюратор и бак.

Рис. 32. Схема газобаллонной установки автомобиля ЗИЛ-138:
1 - воздушный фильтр; 2 - трубка подвода воды к испарителю; 3 - шланг высокого давления от испарителя к фильтру газа; 4 - испаритель газа; 5 - шланг подвода воды от испарителя к компрессору; 6 - газопровод системы холостого хода; 7 - шланг высокого давления от магистрального вентиля к испарителю газа; 8 - труба подвода газа к смесителю; 9 - дозирующе-экономайзерное устройство редуктора; 10 - газовый редуктор; 11 - измерительный преобразователь давления газа; 12 - фильтр редуктора; 13 - манометр газового редуктора; 14 - магистральный вентиль; 15 - бензиновый бак; 16 - фильтр; 17 - смеситель газа; 18 - проставка под смеситель; 19 - расходный вентиль паровой фазы; 20 - контрольный вентиль максимального наполнения баллона; 21 - измерительный преобразователь указателя уровня жидкости в баллоне; 22 - предохранительный клапан; 23 - наполнительный вентиль; 24 - расходный вентиль жидкостной фазы; 25 - баллон; 26 - карбюратор; 27 - шланг, соединяющий вакуумные пространства экономайзера и разгрузочного устройства редуктора с впускным трубопроводом двигателя.

Магистральный вентиль предназначен для перекрытия с места водителя подачи газа из баллона к испарителю, газовому редуктору и смесителю.

Испаритель газа преобразует жидкую фазу топлива в газообразную. Газ проходит по каналу в алюминиевом корпусе смесителя, подогревается циркулирующей через полость корпуса водой из системы охлаждения двигателя и испаряется.

Газовый фильтр, оснащенный фильтрующим элементом, состоящим из металлической сетки и пакета войлочных пластин, очищает газ, поступающий к редуктору, от механических примесей - окалины и ржавчины. Фильтр установлен на входном штуцере редуктора.

Редуктор служит для снижения давления, поступающего к смесителю газа до близкого к атмосферному. При остановке двигателя редуктор автоматически прекращает подачу газа к смесителю.

Устройство и действие редуктора показаны на рис. 33.

В цилиндрическом корпусе редуктора размещены камера А первой ступени, камера Б второй ступени и кольцеобразная камера В вакуумного разгружателя.

Одна из стенок камеры первой ступени образована резиновой диафрагмой, края которой зажаты между корпусом редуктора и крышкой. Со стороны крышки на диафрагму постоянно давит сжатая пружина, стремящаяся прогибать диафрагму внутрь корпуса редуктора (вверх). Центральная часть диафрагмы связана коленчатым рычагом с клапаном, благодаря чему при прогибании диафрагмы внутрь рычаг открывает клапан, а при прогибании ее наружу закрывает его.

В камере второй ступени находится зажатая по окружности между верхней частью корпуса и крышкой диафрагма. Ее центральная часть соединена рычагом с клапаном второй ступени. Прогибание диафрагмы вниз вызывает открытие клапана второй ступени, прогибание ее вверх - закрытие клапана. Действующая на шток диафрагмы пружина стремится выгибать диафрагму вверх.

Полости под крышками диафрагм камер первой и второй ступеней сообщены с атмосферой, а следовательно, снаружи на обе диафрагмы постоянно действует атмосферное давление.

В камере В разгружателя установлена кольцевая диафрагма, на которую действует пружина, выгибающая диафрагму вверх.

Снизу к корпусу редуктора прикреплен корпус дозирующе-экономайзерного устройства, в котором размещены основное дозирующее устройство редуктора и экономайзер с пневматическим приводом.

В дозирующее устройство входят дозирующие отверстия постоянного и переменного сечения, клапан-регулятор экономической регулировки газовой смеси и регулировочный винт мощностной регулировки. Клапан с пружиной и диафрагма с пружиной являются деталями экономайзера.

Корпус дозирующе-экономайзерного устройства имеет патрубок для выхода газа; штуцеры на крышке корпуса служат для соединения камеры В разгружателя с полостью под диафрагмой экономайзера и с впускным трубопроводом двигателя.

Редуктор крепят под капотом двигателя к передней стенке кабины на специальном кронштейне. Газ к редуктору подводится через газовый фильтр, укрепленный на штуцере. К штуцеру присоединяют трубку манометра, позволяющего контролировать давление в камере первой ступени. Патрубок соединяют газопроводом низкого давления со смесителем, а штуцер при помощи резиновой трубки с впускным трубопроводом двигателя.

Рис. 33. Газовый редуктор:
а -- устройство; б - схема действия; А - камера первой ступени; Б - камера второй ступени; В - камера вакуумного разгружателя; 1 - штуцер подвода газа; 2 - штуцер для присоединения манометра; 3 - клапан первой ступени; 4 и 5 - крышка диафрагмы и диафрагма камеры первой ступени; 6 - пружина диафрагмы первой ступени; 7 - регулировочная гайка; 8 - рычаг привода клапана первой ступени; 9 - клапан второй ступени; 10 - клапан-регулятор; 11 - клапгн экономайзера; 12 - пружина клапана; 13 я 18 - штуцеры; 14 - крышка корпуса

При открывании магистрального вентиля газ из баллона начинает поступать через испаритель, фильтр, газовый фильтр редуктора (рис. 33), входной штуцер и открытый клапан в камеру А первой ступени редуктора. По мере поступления газа давление в камере повышается, и, когда оно достигает требуемой величины (избыточное или манометрическое давление должно быть 0,17…0,18 МПа или 1,7… 1,8 кгс/см2), диафрагма 5 выгибается вниз и рычажный привод закрывает клапан, прекращая доступ газа в редуктор. Если давление в камере первой ступени падает, пружина прогибает диафрагму вверх, клапан открывается и в камеру снова начинает поступать газ. Таким образом, в камере первой ступени автоматически устанавливается постоянное давление, величина которого зависит от силы натяжения пружины.

Предохранительный клапан предотвращает повреждение диафрагмы камеры первой ступени редуктора, которое может произойти вследствие нарушения герметичности закрытия ее клапана. Если клапан камеры первой ступени закрывается неплотно, газ из баллона все время поступает в эту камеру и давление в ней может превысить допустимую величину. Пружина предохранительного клапана отрегулирована на давление ло 0,45 МПа (4,5 кгс/см2). При большем давлении предохранительный клапан открывается и выпускает часть газа из камеры первой ступени наружу.

Пока двигатель не работает, клапан камеры второй ступени закрыт и газ в нее из камеры первой ступени не поступает. При пуске двигателя в камере второй ступени, соединенной газопроводом со смесителем, образуется разрежение, и диафрагма, прогибаясь внутрь, через рычажный привод откроет клапан. Газ из камеры первой ступени начнет перетекать в камеру второй ступени, давление в которой по мере поступления в нее газа повышается. Когда давление поднимется до близкого к атмосферному, клапан закроется и поступление газа из камеры первой ступени прекратится.

Действует разгружатель следующим образом. Когда двигатель не работает, давление пружины разгружателя передается через упор на тарелку диафрагмы, увеличивая силу закрытия клапана второй ступени.

Во время работы двигателя на малых частотах холостого хода и при малых нагрузках (дроссель смесителя прикрыт) в камере В разгружателя, соединенной трубкой с впускным трубопроводом двигателя, создается сильное разрежение и диафрагма прогибается вниз. Упор прекращает давление на диафрагму камеры второй ступени, вследствие чего на клапан второй ступени действует только одна пружина, позволяющая ему открываться даже при отсутствии разрежения в камере второй ступени.

Благодаря этому при малых частотах холостого хода и малых нагрузках газ из камеры второй ступени поступает к смесителю под избыточным давлением 100…200 Па (10…20 мм вод. ст.). По мере возрастания нагрузки двигателя давление газа на выходе из редуктора и в камере второй ступени понижается, и в ней создается небольшое разрежение.

Дозирующе-экономайзерное устройство регулирует количество газа, поступающего к смесителю, а следовательно, и поддерживает необходимый состав газовоздушной смеси.

При малых и средних нагрузках двигателя, когда дроссель смесителя открыт не полностью, в задроссельном пространстве смесителя поддерживается значительное разрежение. Поскольку полость под диафрагмой экономайзера сообщена с задроссельным пространством, в ней также образуется разрежение, под действием которого диафрагма прогибается вниз и клапан экономайзера закрывается. На этом режиме газ из камеры второй ступени редуктора проходит к выходному патрубку через отверстие постоянного сечения и отверстие, сечение которого можно изменять вращением клапана-регулятора; положение последнего подбирают с расчетом получения экономичной работы двигателя.

При больших нагрузках, когда открытие дросселя смесителя приближается к полному, разрежение в задроссельном пространстве и в полости под диафрагмой экономайзера уменьшается. Под действием пружины диафрагма выгибается вверх и открывает клапан, после чего к выходному патрубку редуктора начинает поступать дополнительное количество газа через отверстие постоянного сечения и отверстие переменного сечения. Количество дополнительно поступающего газа регулируют вращением винта, добиваясь получения от двигателя максимальной мощности.

Смеситель и карбюратор. Смеситель служит для приготовления смеси газа и воздуха. Смеситель двухкамерный, обе камеры работают одновременно и параллельно на всех режимах.

Рис. 34. Смеситель:
1 - газоподводящий патрубок; 2 - обратный клапан; 3 - воздушная заслонка; 4 - газовая форсунка; 5 - диффузор; 6 и 10 - распыливающие отверстия системы холостого хода; 7 - штуцер подвода газа из камеры второй ступени редуктора; 8 и 9 - регулировочные винты системы холостого хода; 11 - дроссель.

В газ поступает к форсунке от редуктора через патрубок и обратный клапан. В нижней части смесительной камеры расположены распыливающие отверстия системы холостого хода, сечение которых можно изменять при помощи регулировочных винтов.

Смеситель снабжен центробежно-вакуумным ограничителем частоты вращения коленчатого вала двигателя, однотипным с устанавливаемым на карбюраторном двигателе ЗИЛ-130.

Смеситель присоединен к впускному трубопроводу двигателя через проставку, к которой прикреплен карбюратор. Работает смеситель следующим образом.

При пуске кратковременно закрывают воздушную заслонку (рис. 34), чтобы усилить разрежение в диффузоре и вызвать усиленный приток газа через форсунку.

На малых частотах холостого хода газ поступает из редуктора через штуцер к распыливающим отверстиям под действием сильного разрежения, образующегося в зоне за прикрытым дросселем.

Во время работы двигателя под нагрузкой газ поступает в смесительную камеру через форсунку. Состав смеси при этом регулируется дозирующе-экономайзерным устройством газового редуктора.

Когда двигатель работает на газе, воздушная заслонка, дроссель карбюратора и топливный (бензиновый) кран должны быть закрыты.

Если требуется перевести двигатель на бензин, необходимо закрыть магистральный вентиль газобаллонной установки и выработать весь газ из приборов, расположенных после этого вентиля, до остановки двигателя. Затем закрыть обе заслонки смесителя и пустить двигатель на бензине, как обычный карбюраторный двигатель.

Для последующего перехода на газ закрывают топливный (бензиновый) кран и вырабатывают бензин из карбюратора. После этого закрывают воздушную заслонку и дроссель карбюратора и пускают двигатель на газе, предварительно открыв магистральный вентиль. Работа двигателя одновременно на бензине и газе не допускается.

Пускают на газе холодный двигатель при открытом паровом и закрытом жидкостном расходных вентилях баллона. Когда двигатель прогреется, открывают жидкостной и закрывают паровой расходные вентили.

При низких температурах окружающего воздуха, когда пуск холодного двигателя на газе затруднен, рекомендуется сначала пустить и прогреть двигатель на бензине, а затем перевести его на газ, как сказано выше.

Газопроводы и их соединения. Газопроводы высокого давления (от баллона до редуктора) изготовляют из стальных или медных трубок с толщиной стенок около 1 мм и наружным диаметром 10… 12 мм. Газопроводы соединяют с приборами газобаллонной установки при помощи ниппельных соединений.

Газопроводы низкого давления (от редуктора до смесителя) выполняют из тонкостенных стальных труб и газостойких резиновых шлангов большого сечения. Соединяют их стяжными хомутами.

Основные неисправности газобаллонной установки: утечка газа через неплотности соединения; неплотное закрытие вентилей и клапанов; засорение газового фильтра; нарушение регулировки редуктора, вызывающее чрезмерное обогащение или обеднение газовоздушной смеси; нарушение регулировки системы холостого хода смесителя.

Правила безопасного труда на газобаллонных автомобилях. При утечке газ образует с воздухом взрывчатые смеси. В случае попадания на кожу сжиженный газ интенсивно испаряется и может вызвать термические ожоги (обмораживание).

Вдыхание испаренного газа вызывает отравление. Поэтому необходимо внимательно следить за герметичностью всех соединений газобаллонной установки. Значительная утечка обнаруживается на слух (по шипению газа), чтобы обнаружить незначительную утечку, смачивают места соединений мыльной водой. При утечке нельзя ставить автомобиль в закрытое помещение.

Возле автомобиля нельзя пользоваться открытым огнем.

При необходимости подтягивания соединений трубопроводов установки следует предварительно закрыть расходные вентили баллонов и выработать газ до остановки двигателя.

К атегория: - Техническое обслуживание автомобилей

План занятия

1. Организационный момент – 3 мин.

2. Опрос студентов по предыдущему материалу – 10 мин.

3. Изложение нового материала – 55 мин.

4. Закрепление нового материала -12 мин.

5. Подведение итогов – 7 мин.

6. Задание на дом – 3 мин.

Итого: 90 мин.

Оборудование занятия:

– Мультимедиа, компьютер, DVD – диски;

– Слайды, плакаты;

– Учебные элементы;

Опрос (фронтальный)

Вопросы:

Ø Каково устройство и работа ограничителя максимальной частоты вращения коленчатого вала?

Ø Каков принцип работы системы рециркуляции отработавших газов?

Ø Назначение системы выпуска отработавших газов.

Ø Принципы нейтрализации отработавших газов.

Изложение нового материала

Лекция № 8

Закрепление нового материала :

(проводится фронтальный опрос по изложенной теме)

Ø Разбираем правильность ответов.

Ø Выставляем оценки, комментарий;

Задание на дом:

Ø Заполнить тетрадь для лабораторных работ по пройденной теме.

Ø Повторить пройденный материал.

Ø Не забываем про конструкторские разработки.

(Конспект лекции № 8)

Газовыми называются карбюраторные двигатели, работающие на газообразном топливе - сжатых и сжиженных газах. Особенно­стью газовых двигателей является их способность работать также и на бензине. Система питания газовых двигателей имеет специаль­ное газовое оборудование. Имеется также дополнительная резерв­ная система, обеспечивающая при необходимости работу газово­го двигателя на бензине.

По сравнению с карбюраторными газовые двигатели более эко­номичны, менее токсичны, работают без детонаций, имеют бо­лее полное сгорание топлива и меньший износ деталей, срок их службы больше в 1,5-2 раза. Однако их мощность меньше на 10… 20 %, так как в смеси с воздухом газ занимает больший объем, чем бензин. У них более сложная система питания и сложное обслуживание в эксплуатации, требующее высокой техники

безопасности.

Топливо для газовых двигателей

Сжиженными называются газы, которые превращаются в жидкость при нормальной температуре и давлении до 1,6 МПа (16 кгс/см 2).

Сжатыми называются газы, которые сохраняют газообразное состояние при обычных температурах окружающего воздуха и при сжатии их до любого высокого давления. Как правило, давление сжатия достигает 20 МПа (200 кгс/см 2).

Сжатые газы . Такие газы разделяются на природные (естествен­ные), нефтяные и канализационные.

Природные (естественные) газы добывают из буровых газовых скважин. Природные газы однородны по составу, в большинстве случаев не содержат загрязняющих и вредных примесей, обладают высокими антидетонационными свойствами и дешевы.

Нефтяные газы получают в качестве побочного продукта при добыче нефти, переработке нефти на нефтеперегонных и крекин­говых заводах, а также при производстве бензина из нефтяного газа на газолиновых заводах. Нефтяные газы менее однородны по составу и более загрязнены примесями, чем природные газы. Их теплотворность выше теплотворности природных газов, так как они содержат больше тяжелых газов.

Канализационные газы выделяются при переработке сточных вод канализации на специальных станциях, имеющихся в круп­ных, городах. Эти газы состоят главным образом из метана и угле­кислого газа. Выход канализационного газа со станции переработки сточных вод, обслуживающей население в 100 000 чел., достигает 2500 м 3 в сутки, что заменяет 2000 л бензина. Применение вместо бензина сжатого природного газа благодаря его огромным запасам и небольшой стоимости целесообразно, особенно на внутригородских и пригородных перевозках. Однако невысокое значение объемной теплоты сгорания сжатого газа по сравнению с сжиженным газом не позволяет обеспечить хранение на автомобиле достаточного количества газа даже при высоком давлении. Вследствие этого запас хода газобаллонных автомобилей, работающих на сжатом природном газе, примерно вдвое меньше, чем у автомобилей, работающих на сжиженном газе, баллоны которого к тому же имеют значительно меньшую массу. Поэтому для газобаллонных автомобилей использование сжижен­ных газов предпочтительнее, чем сжатого.

Сжиженные газы . В состав сжиженных, или жидких, газов, при­меняемых для автомобильных двигателей, входят бутан и пропан с добавлением бутилена, пропилена, этана и этилена. Величина давления сжиженного газа имеет важное практическое значение. С од­ной стороны, давление в баллоне желательно иметь низким, так как при этом можно применять более тонкостенные, а, следова­тельно, и более легкие баллоны. С другой стороны, давление сжижен-­
ного газа в баллоне при любой температуре должно быть достаточным для обеспечения подачи топлива к двигателю и работы газовой аппаратуры.

Пропан (а также пропилен) обеспечивает удовлетворительную величину давления в баллоне при любых климатических условиях. Бутан в чистом виде пригоден лишь для районов с жарким климатом, так как при температуре воздуха ниже 0 0 С он уже не обеспечивает избыточного давления в баллоне.

Этан применяется в сжиженных газах в виде незначительных примесей для повышения давления.

Основными производителями сжиженных газов являются:

· газолиновые заводы, вырабатывающие бензин из нефтяных газов; выход сжиженного газа составляет до 50% от производства бензина;

· крекинг-заводы, на которых сжиженные газы получают в качестве побочного продукта в количестве до3% по весу от исходного сырья;

· заводы, вырабатывающие бензин из каменного угля; выход сжиженного газа доходит до 10 – 12% от веса основной продукции.

Основные требования предъявляемые к сжиженным газам:

· соответствие их состава климатическим условиям;

· строго ограниченное содержание загрязняющих и вредных примесей.

При самых низких температурах воздуха давление в баллоне со сжиженным газом не должно быть ниже 0,2 МПа (2 кгс/см 2), при самых высоких – не более 1,6 МПа (16 кгс/см 2). Предельное содержание сернистых соединений составляет 0,15 %. Газ не должен содержать воды, механических примесей, водорастворимых кислот, щелочей и смолистых веществ.

Сравнение сжиженных и сжатых газов. Как высококалорийные сжатые газы, так и сжиженные бутано-пропановые газы являются высококачественным топливом для автомобильных двигателей. Однако сжиженные газы обладают существенными преимуще­ствами перед сжатыми газами:

· значительно более низкое рабочее давление (до 1,6 МПа против 20 МПа), что позволяет применять более легкие и дешевые баллоны и газопроводы;

· возможность перевозки в железнодорожных и автомобильных цистернах на любые расстояния; перевозка сжатых газов практически не осуществляется;

· более дешевые и простые газозаправочные устройства, не тре­бующие сложного оборудования; заправка баллонов сжатым газом возможна лишь на газонаполнительных станциях, снабженных компрессорами высокого давления;

· увеличенная дальность поездок и большая полезная грузоподъемность газобаллонных автомобилей, работающих на сжиженных газах.

Сжатые газы, в свою очередь, имеют преимущества перед сжи­женными:

· это дешевый, часто малоиспользуемый вид местного топлива; сжиженные газы, наоборот, являются более дорогим продуктом, применяемым при производстве ряда ценных химических веществ, высокосортных бензинов, в бытовых целях и др.;

· источники природных и промышленных газов расположены в самых различных районах страны, что позволяет значительно со­кратить доставку жидкого топлива в эти регионы; станции заправки сжиженными газами менее распространены.

Для автомобильного транспорта целесообразно использование как сжиженных, так и сжатых газов, в зависимости от наличия местных источников газа и от возможности организации газоснабжения.

Преимущества газового топлива по сравнению с бензином.

К числу преимуществ горючих газов перед бензином следует отнести:

· более лёгкое и полное перемешивание топлива с воздухом;

· более равномерное распределение топлива по отдельным ци­линдрам двигателя;

· полное отсутствие разжижения картерного масла топливом и смывания масляной пленки со стенок цилиндров;

· уменьшение нагара на поршнях, клапанах и стенках камеры сгорания;

· меньшая ядовитость отработавших газов вследствие более полного сгорания топлива, чем при работе на бензине;

· значительное уменьшение износа деталей цилиндропоршневой группы двигателя;

· высокие антидетонационные свойства газообразного топлива и связанная с этим возможность значительно повысить степень сжатия в двигателе, что повышает мощность и снижает расход топлива.

Недостатки горючих газов как топлива для автомобильных двигателей.

В качестве топлива для автомобильных двигателей горючие газы имеют следующие недостатки:

· усложнение и удорожание системы топливоподачи, так как газовые баллоны с их арматурой, газопроводы и газовая аппарату­ра сложнее по конструкции, дороже и тяжелее, чем бензобак, бензопроводы и бензонасос;

· снижение мощности при переводе бензинового двигателя на таз без всяких переделок. Это обусловлено более низкой теплопроводностью газовоздушной смеси по сравнению с бензиновоздушной смесью и ухудшением наполнения цилиндров двигателя вследствие более высокой температуры горючей смеси во впуск­ном трубопроводе.

Температура горючей смеси при работе на газе на 15..20 0 С выше, чем при работе, на бензине, так как на испарение бензина в карбюраторе и впускном трубопроводе затрачивается некоторое количество теплоты.

При одинаковом составе горючей смеси теплотворность газовоздушной смеси для всех видов газов, за исключением окиси уг­лерода, ниже теплотворности бензиновоздушной смеси: для при­родного газа на 9 %, для коксового газа на 10 %, для сжиженных газов на 2…3 %.

Подогрев впускного трубопровода, необходимый при работе набензине, вреден при работе на всех видах газов, так как вызывает снижение мощности на 4… 6 %.

По пусковым качествам при температуре окружающего возду­ха не ниже – 5 °С газовые двигатели не отличаются от бензиновых. При более низких температурах пуск холодного двигателя вызы­вает затруднения. Кроме того, к недостаткам применения газово­го топлива по сравнению с бензиномотносится худшеемассовое наполнение цилиндров, снижение скорости горения смеси и мень­шее выделение теплоты при ее сгорании. В результате этого мощность двигателя в зависимости от вида применяемого газа умень­шается на 7… 10 % при такой же степени сжатия, как у карбюра­торных двигателей. Поэтомуувеличение мощности газовых двига­телей достигается обычно путем повышения их степени сжатия. Так, если у бензинового двигателя ЗИЛ-508 степень сжатия 7,1, то у его газовой модификации – 8,2; у бензинового двигателя ЗМЗ-511 – 7,6, а у его газовой модификации – 8,7.

Газобаллонные установки для работы на сжиженных и сжатых газах.

Для работы на сжиженных и сжатых газах обычно используют серийные автомобили, на которых устанавливают газобаллонные установки для работы на СНГ или СПГ. Основными моделями \ автомобилей, работающих на сжиженном нефтяном газе, являются грузовые автомобили ГАЗ-33075, ГАЗель-320210, – 320211, ЗИЛ-431810, – 441610, переоборудованные легковые автомобили ГАЗ-3102; – 31105, автобусы ЛиАЗ-677Г, а на сжатом природном газе – автомобили ГАЗ-33076, – 53-27, ЗИЛ-431610, – 431710, ЗИЛ – ММЗ-45054, автобусы ЛиАЗ-677МГ. Рабочий цикл двигателей этих автомобилей такой же, как и у карбюраторных, но их системы питания имеют принципиальное различие, так как процесс сме­сеобразования осуществляется с помощью специальной газоподающей аппаратуры. Для грузовых автомобилей и легковых авто­мобилей-такси типа ГАЗ-3102 «Волга» газовые приборы и армату­ру выпускает Рязанский завод автомобильной аппаратуры, а для легковых автомобилей семейств ВАЗ, «ГАЗель» – Новогрудский завод газовой аппаратуры (НЗГА).

В газобаллонных автомобилях, работающих на сжиженном газе, имеются газовая и бензиновая системы питания. Газовая система питания является основной и предназначена для выполнения транспортной работы. Она обеспечивает запас хода газобаллон­ных автомобилей в пределах 375… 420 км. В закрепленных на рамах этих автомобилей баллонах газ находится одновременно в двух агрегатных состояниях: в жидкой и газообразной фазах. Баллоны для СНГ рассчитаны на избыточное давление 1,6 МПа, а мини­мальное давление газа в них, при котором сохраняется работо­способность газовой аппаратуры и двигателя, должно быть в пре­делах 0,06… 0,08 МПа. Особенность газовой аппаратуры, работаю­щей на СНГ, заключается в том, что рабочее давление зависит не от объема газа в баллоне, а от его компонентного состава и тем­пературы наружного воздуха.

Бензиновая система питания является резервной и предназна­чена для пуска двигателя в холодное время и передвижения авто­мобиля на небольшие расстояния (15…25 км) в случаях полного расходования газа или отказа газового оборудования. При работе двигателя на резервной системе питания его мощность значитель­но ниже мощности, получаемой при работе на газовом топливе.

Газобаллонные автомобили, работающие на СПГ, выполнены по универсальной схеме, т.е. эффективно могут работать как, на сжатом газе, так и на бензине. Использование двух систем пита­ния позволяет увеличить запас хода автомобилей и расширить сферы их применения.

В отличие от газобаллонных установок, работающих на СНГ, в установках СПГ рабочее давление газа в баллоне изменяется по мере его расходования от максимального (20 МПа) до давления, близкого к атмосферному.

Газобаллонные установки для работы на СНГ грузовых автомо­билей. Установки для работы на сжиженном газе грузовых автомо­билей семейств ЗИЛ и ГАЗ (рис.35) включают в себя баллон 11 для хранения газа с двумя расходными вентилями (вентиль 12 предназначен для отбора жидкой фазы газа, а вентиль 10 - паро­вой фазы), магистральный вентиль 8, испаритель 23, двухступен­чатый редуктор 2 с фильтром 4, магистральный фильтр 3, смеси­тель 14 с воздушным фильтром 19 и проставкой 15.

Рис. 36 Схема газобаллонной установки для работы на СНГ грузов автомобилей семейства ЗИЛ и ГАЗ

Газобаллон­ные установки СНГ грузовых автомобилей семейства ЗИЛ отли­чаются от установок СНГ грузовых автомобилей семейства ГАЗ в основном тем, что у первых газовый редуктор расположен на дви­гателе, а у вторых - на передней стенке кабины под капотом.

При пуске и прогреве двигателей газобаллонных автомобилей их питание осуществляется газом от паровой фазы, а после про­грева при переходе на нагрузочные режимы – от жидкостной. На нагрузочных режимах газ из баллона 11 через расходный вентиль 12 поступает к магистральному вентилю 8, а от него по трубопрово­ду 7 высокого давления - в испаритель 23. Проходя по каналам испарителя СНГ переходит в парообразное состояние под дей­ствием тепла нагретой жидкости, поступающей по шлангу 20 из системы охлаждения двигателя, которая затем отводится в комп­рессор 21 по шлангу 22. Из испарителя газ поступает в магистральный фильтр 3, где очищается от механических примесей и смолистых веществ. Затем газ через дополнительный фильтр 4 поступает в первую ступень редуктора 2, где давление понижается до 0,20 МПа. Далее газ noступает во вторую ступень редуктора, где давление снижается до давления, близкого к атмосферному. Под действием разрежения во впускном газопроводе двигателя газ из второй ступени редуктора поступает в дозирующее экономайзерное устройство 1 , встроенное в редуктор, а затем по трубопроводу 13 низкого давления в газовый смеситель 14, где смешивается с воздухом, образуя горючую смесь, которая поступает в цилиндры, обеспечивая работу двигателя.

Остановку двигателя на короткое время производят выключением зажигания, а при длительной остановке перекрывают также и магистральный вентиль 8.

Работу газовой установки контролируют с помощью манометра 5 и указателя 6 давления газа, расположенных в кабине водителя и соединенных соответственно с датчиком давления газов в первой ступени редуктора и датчиком уровня сжиженных газов в баллоне. В кабину также выведена рукоятка управления магистральным вентилем 8.

Резервная (бензиновая) система питания включает в себя бензиновый бак 9, бензопровод, фильтр-отстойник 16, бензиновый насос 17, карбюратор 18 с сетчатым пламегасителем. Однокамерный беспоплавковый карбюратор 18 горизонтального типа имеет проставку 15, которая является переходным узлом для присоеди­нения карбюратора к выпускному трубопроводу двигателя. Принцип работы резервной системы питания аналогичен принципу работы классической карбюраторной системы питания бензинового двигателя. Для предотвращения одновременной работы автомобиля на двух видах топлива в систему топливоподачи устанавливают электромагнитный запорный клапан, а для прекращения подачи бензина в резервную систему питания бак 9 снабжают краном.

Одновременная работа на двух видах топлива приводит к нару­шению состава горючей смеси, что сопровождается обратными вспышками и опасно в пожарном отношении.

Газобаллонные установки для работы на СНГ легковых автомо­билей . По принципу действия и расположению аппаратуры газо­баллонной установки сжиженного газа отечественные легковые автомобили не имеют существенных различий. В газовой установ­ке, смонтированной на автомобиле ГАЗ-3102 «Волга», баллон 5 (рис. 37) размещается в багажнике автомобиля. На нем монтиру­ется датчик 6 указателя уровня сжиженного газа и объединенные в один узел расходный вентиль 7 жидкостной фазы, расходный вентиль 9 паровой фазы, а также наполнительное устройство 8 с вентилями, обратными и предохранительными клапанами. Кон­структивно объединены также редуктор 1 с испарителем и газо­вый фильтр 12 с электромагнитным клапаном.

Рис. 37. Схема газобаллонной установки для работы на СНГ автомобиля ГАЗ-3102 «Волга»

Сжиженный газ под избыточным давлением из баллона 5 поступает через расходные вентили 7 или 9 по трубопроводу 11 в газовый фильтр 12. Из фильтра очищенный газ по трубопроводу 13 поступает в двухступенчатый редуктор 1 , в испарителе которого происходит одновременное испарение СНГ и понижение его дав­ления до 0,10 МПа. Для испарения газа используется нагретая жидкость системы охлаждения двигателя, которая поступает в испаритель из головки цилиндров через шланг 3 и сливается из него через шланг 14 в трубопровод отопителя кузова. Из редукто­ра 1 газ по шлангу через регулировочный винт 2 поступает в сме­сительное устройство 4 и через форсунки – в карбюратор-смеси­тель, где приготовляется горючая смесь, необходимая для данно­го режима работы двигателя.

Газобаллонная установка позволяет полноценно работать автомобилю ГАЗ-3102 «Волга» как на СНГ, так и на бензине, который поступает к двигателю по трубопроводу 10 из топливного бака. В кабине водителя под панелью приборов установлены: пере­ключатель вида топлива (СНГ - бензин), выключатель электромагнитного клапана газового фильтра и кнопочный выключатель пускового клапана. Пусковой электромагнитный клапан срабаты­-
вает после включения системы зажигания.

Газобаллонные установки для работы на СПГ.

Основные конст­руктивные параметры установок СПГ грузовых автомобилей ЗИЛ и ГАЗ практически полностью унифицированы, а их конструк­тивные схемы имеют в основном различие по количеству баллонов. Так, на автомобиле ЗИЛ-431710 установлено 10 баллонов, на автомобиле ЗИЛ-431610 – 8, на автомобиле ГАЗ-53-27– 7.
Полезная вместимость каждого баллона составляет 5О л., а тепловая энергия газа, содержащегося в одном баллоне, эквивалентна примерно 11,5 л. бензина. Запас хода автомобиля при работе на СПГ составляет 230…270км.

Газобаллонная установка автомобиля ЗИЛ-431610 (рис. 38) включает в себя редукторы 5 и 3 соответственно высокого и низ­кого давления, электромагнитный клапан 6 с газовым фильтром, пусковой клапан 4, газовый смеситель-переходник 2, карбюра­тор-смеситель 18, трубопроводы высокого и низкого давления, восемь баллонов 16 с арматурой (вентили, манометры и т.д.). Бал­лоны закреплены на продольных брусьях под грузовой платфор­мой автомобиля. Они последовательно соединены между собой трубопроводами 10 и разделены на две группы (по четыре балло­на в каждой). Трубопроводы снабжены компенсаторами в виде спиральных витков, которые предохраняют их от поломок при деформациях и перекосах рамы. Каждая группа баллонов имеет запорные вентили 8 и 11, соединенные трубопроводами с распре­делительной крестовиной 12, на которой размещены наполни­тельный 9 и расходный 13 вентили. Наполнительный вентиль служит для заполнения всех баллонов сжатым газом, а расходный обеспечивает поступление (отбор) или прекращение подачи газа от баллонов к аппаратам системы питания.

Рис. 38. Схема газобаллонной установки для работы на СПГ автомоби­лей семейства ЗИЛ

При работе газобаллонной установки газ из баллонов 16 посту­пает к крестовине 12 и, пройдя через расходный вентиль 13, на­правляется к одноступенчатому редуктору высокого давления 5, на входе которого установлен съемный газовый фильтр (такой же второй фильтр расположен внутри редуктора). Во избежание пе­реохлаждения газа в редукторе последний расположен в подка­потном пространстве автомобиля. В зимнее время он дополнительно обогревается горячей жидкостью, поступающей в кронштейн ре­дуктора из системы охлаждения двигателя.

В магистрали редуктора высокого давления происходит частич­ная очистка газа от механических примесей и снижение его дав­ления до 0,9 МПа. Затем газ поступает к электромагнитному кла­пану 6 с вмонтированным в него газовым фильтром. Электро­магнитный клапан обеспечивает автоматическое перекрытие газо­вой магистрали в аварийной ситуации. Газ, проходя через фильтр, установленный в этом клапане, очищается от смолистых веществ, ржавчины и пыли, поступает в первую ступень двухступенчатого редуктора 3 низкого давления, который по принципу работы и ус­тройству аналогичен редуктору, применяемому на установках СНГ.

Из первой ступени редуктора низкого давления газ поступает во вторую его ступень, где давление понижается до значения, близкого к атмосферному. Далее газ из второй ступени редуктора низкого давления поступает в дозирующее экономайзерное уст­ройство, обеспечивающее подачу необходимого количества газа в газовый смеситель-переходник 2, где газ смешивается с очищен­ным воздухом, поступающим из воздушного фильтра. Смешан­ный с воздухом газ под действием разрежения, создаваемого в работы на газе и на бензине.

При работе двигателя на газе необходимый состав горючей смеси в режиме холостого хода образуется в специальной приставке карбюратора-смесителя, куда газ поступает по шлангу 21 из патрубка газового смесителя-переходника 2.
Для повышения стабильности работы двигателя при переходе с режима холостого хода на нагрузочные режимы на входе в карбюра­тор-смеситель 18 установлен тарельчатый обратный клапан, кото­рый при частоте вращения коленчатого вала свыше 1000 об/мин открывается, тем самым, обогащая горючую смесь на переходных режимах. Пуск холодного двигателя при низких температурах воздуха обеспечивается пусковым устройством, состоящим из пускового электромагнитного клапана 4 с дозирующим жиклером, шланга 17, воздушной заслонки карбюратора-смесителя 18 и кнопочного пе­реключателя, расположенного в кабине водителя, В отличие от га­зобаллонных установок СПГ автомобилей ЗИЛ газобаллонные ус­тановки автомобилей ГАЗ не имеют устройства для облегчения пуска двигателей при низких температурах.

Работу газобаллонной установки СПГ контролируют по пока­заниям манометров высокого и низкого давления. Манометр 7 высокого давления (со шкалой с пределом измерений до 25 МПа) показывает давление газа в баллонах 16 и одновременно с этим является указателем запаса сжатого газа на автомобиле. Дополни­тельно к этому в редуктор высокого давления ввернут датчик кон­трольной лампы, установленной на панели приборов в кабине. Лампа загорается при снижении давления газа в редукторе ниже 0,45 МПа, сигнализируя о том, что газа в баллонах осталось на 10… 12 км пробега.

Манометр низкого давления (со шкалой с пределом измере­ний до 0,6 МПа) также установлен в кабине водителя и предназ­начен для контроля за работой и правильностью регулировки двух­ступенчатого редуктора низкого давления.

Бензиновая система питания автомобилей, работающих на СПГ, по принципу действия аналогична системам питания базовых мо­делей автомобилей и обеспечивает запас хода 450…525 км. Она включает в себя топливный бак 14

(рис. 39), фильтр грубой очистки бензина 15, топливопроводы, бензиновый насос 20, кар­бюратор-смеситель 18. Особенностью бензиновой системы пита­ния является наличие электромагнитного клапана для отключе­ния подачи бензина при работе на СПГ. На газобаллонных авто­мобилях ЗИЛ он устанавливается на фильтре 19 тонкой очистки бензина, а на автомобилях ГАЗ – на каркасе радиатора. Управле­ние клапаном производится из кабины водителя.

Газодизельные установки для работы на сжатых газах.

Газоподающая аппаратура СПГ и приборы подачи воздуха и жидкого топлива в дизелях составляют газодизельную систему питания, которая обеспечивает возможность работы дизеля как на смеси природного газа и небольшой дозы дизельного топлива, так и на чистом дизельном топливе.

Воспламенение одной только газовоздушной смеси от сжатия в дизелях практически невозможно из-за высокой температуры самовоспламенения газа (700… 750 °С), значительно превышающей температуру самовоспламенения дизельного топлива (320… 370 °С). Поэтому в цилиндры дизеля подают небольшую массовую дозу (12… 17%) запального дизельного топлива, очаги самовоспламе­нения которого в цилиндрах обеспечивают надежное сгорание даже сильно обедненного заряда газовоздушной горючей смеси. При увеличение дозы запального топлива повышается устойчивость процесса сгорания вследствие образования большого количества очагов самовоспла-менения.

Газодизельные установки для работы на СПГ применяются на автомобилях КамАЗ следующих моделей: –53208 (бортовой), –53219 (шасси), –54118 (седельный тягач), –55118 (самосвал). На этих автомобилях устанавливается дизель К-7409 с трехрежимным ре­гулятором частоты вращения коленчатого вала, газоподающей аппаратурой и устройством для подачи запального дизельного топлива.

В газодизельных установках сжатый газ содержится в зависимо­сти от модели автомобилей в восьми или десяти баллонах, разме­щенных поперек рамы автомобиля. На бортовых автомобилях бал­лоны 15 (рис. 39) размещают на продольных брусьях платфор­мы; на седельных тягачах и автомобилях-самосвалах - за каби­ной, в специальных держателях, закрепленных на раме; на авто­мобилях-шасси - на деревянных брусьях, установленных на лон­жеронах рамы. Горловины всех баллонов направлены в одну сто­рону. Сами баллоны последовательно соединены трубопроводами и разделены на две

Рис. 39. Схема газодизельной установки для работы на СПГ автомоби­лей КамАЗ:

Подача воздуха: А – из воздушного фильтра; Б – к индикатору засоренности; Поступление жидкости:

В – в систему охлаждения; Г – из системы охлаж­дения.

Сами баллоны последовательно соединены трубопроводами и разделены на две группы, каждая из которых имеет вентиль 10 и связана трубопроводом с крестовиной, имеющий наполнительный 9 и расходный 8 вентили.

С помощью наполнительного вентиля 9 производится заправка сжатым газом всех баллонов газодизельной установки. При откры­тии расходного вентиля 8 газ по трубопроводу направляется в подогреватель 7, а из него – в редуктор высокого давления 6, где происходит понижение давления до 0,95 МПа. Колебания рабочего давления газа поддерживаются автоматически в пределах 0,15 МПа. Еслидавление на выходе становится ниже допустимого, редуктор остается постоянно открытым, а при давлении большем 1,5 МПа срабатывает предохранительный клапан 11. Из редуктора высокого давления газ по гибкому шлангу подается к электромагнитно­му клапану 4, на входе в который встроен войлочный газовый фильтр. В режиме работы дизеля на жидком топливе электромаг­нитный клапан под действием пружины находится в закрытом положении и не пропускает газ в редуктор низкого давления. При переходе дизеля на работу в газодизельном режиме электромаг­нитный клапан 4 открывается и отфильтрованный от механичес­ких примесей газ поступает в двухступенчатый редуктор низкого давления 13. В первой ступени этого редуктора давление газа снижается до 0,20 МПа, а на выходе из второй ступени – до атмос­ферного.

Из двухступенчатого редуктора газ поступает в дозатор газа 17 со встроенным в него мембранным механизмом, обеспечиваю­щим подачу необходимого количества газа в смеситель 18, разме­щенный на впускном коллекторе после воздушного фильтра ди­зеля.

При такте впуска образовавшаяся в смесителе газовоздушная смесь поступает по впускному газопроводу в цилиндры дизеля 1 , затем в конце такта сжатия в них через штатные форсунки впрыс­кивается небольшое количество дизельного топлива.

Дозу запального жидкого топлива подают в цилиндры с необ­ходимым опережением, обеспечивающим сгорание основной мас­сы газовоздушной смеси при переходе поршня через ВМТ. Механизм 3 ограничителя дозы запального топлива, установленный на топливном насосе высокого давления 2, состоит из электромаг­нитного привода и передвижного упора 20 регулятора частоты вращения коленчатого вала. При переводе дизеля на газовое топ­ливо ограничитель 3 переключает насос высокого давления на режим подачи только дозы дизельного топлива для воспламене­ния газовоздушной смеси.

Для ограничения подачи газа при максимальной частоте вра­щения коленчатого вала предусмотрено устройство, состоящее из зубчатого венца 21, датчика 22 частоты вращения и связанного с ним посредством реле электромагнитного клапана 16, который соединяет полость диффузора смесителя с мембранным узлом, ограничивающим подачу газа и взаимодействующим с заслонкой дозатора газа 17, обеспечивая ее частичное прикрытие при часто­те вращения коленчатого вала около 2 600 об/мин.

В газодизельной системе питания имеется также блокировка, исключающая поступление в цилиндр дизеля одновременно газа и полной (цикловой) подачи топлива. Блокировка включает в себя подвижной упор 20, датчик 19 блокировки и ограничитель 3 дозы запального топлива. Блокировка происходит следующим образом.

При установке переключателя в положение, соответствующее работе дизеля в газодизельном режиме, подвижной упор 20 пере­мещается ограничителем 3 в положение, при котором подача за­пальной дозы жидкого топлива ограничивается. При этом под­вижной упор 20, воздействуя на датчик блокировки, замыкает цепь питания реле, управляющего включением электромагнитно­го клапана подачи газа. О переходе на газодизельный режим рабо­ты сигнализирует контрольная лампа с зеленым светофильтром, установленная в кабине.

При нахождении подвижного упора 20 в положении, соответ­ствующем работе дизеля на режиме жидкого топлива, он макси­мально отдален от ограничителя 3 и не воздействует на датчик 19 блокировки устройства, разъединяя посредством реле цепь пита­ния электромагнитного клапана 4 подачи газа. Следовательно, если топливный насос высокого давления работает на полную цикло­вую подачу дизельного топлива, газовый электромагнитный кла­пан закрывается, и подача газа автоматически прекращается. Это необходимо для предотвращения разрушения деталей механизмов дизеля из-за передозировки – одновременной подачи газа и ди­зельного топлива.

Для предотвращения аварийных ситуаций при работе газодизельных установок предусматривается автоматический переход с газодизельного режима на дизельный в случае внезапного пре­кращения подачи газа (при полном расходе газа, повреждениях гибких шлангов, трубопроводов и т.д.). С этой целью в магистра­ ли подвода газа установлен датчик 12 давления газа. При паде­нии давления ниже 0,45 МПа с помощью датчика отключается ограничитель 3 дозы запального топлива, а электромагнитный клапан 4 перекрывает подачу газа, обеспечивая тем самым переход газодизельной установки в режим работы только на дизельном топливе. Работу газодизельной установки контролируют с помощью манометра низкого давления (до 0,6 МПа), размещенного в кабине водителя, и манометра 14 высокого давления (до 25 МПа), установленного на первом баллоне. При снижении давления газа в баллонах ниже 1,05 МПа срабатывает установленный в газовой магистрали датчик 5, подавая сигнал водителю об аварийной выработке газа.

Список литературы:

1. Тур Е.Я., Серебряков К.Б., Жолобов А.А., «Устройство автомобиля», М., Машиностроение, 1991 г.

2. Пузанков А.Г., «Автомобили. Устройство и техническое обслуживание», М., Академия, 2007 г.

3. Тихомиров А.И., «Карбюраторы К-126, К- 135. Устройство, регулировка, ремонт», М., Колесо, 2004 г.

4. Пехальский А.П., Пехальский И.А., «Устройство автомобилей», М., Академия, 2005 г.

5. Ерохов В.И., «Система впрыска топлива легковых автомобилей», М., Транспорт, 2002 г.

Система питания двигателя от газобаллонной установки


Двигатели газобаллонных автомобилей работают на газообразном топливе, запас которого находится в баллонах, установленных на автомобилях.

Применение газобаллонных автомобилей дает возможность использовать имеющиеся в нашей стране значительные ресурсы дешевых горючих газов. Мощность двигателя и грузоподъемность газобаллонных автомобилей такие же, как у базовых автомобилей с карбюраторными двигателями. Поэтому эксплуатация газобаллонных автомобилей технически и экономически целесообразна.

Топливо для газобаллонных автомобилей. В качестве топлива для их двигателей используют смеси сжиженных (точнее, легкосжижае-мых) газов, получаемых из попутного нефтяного и природного газов.

Для газобаллонных автомобилей промышленность выпускает смеси пропана и бутана технических (СПБТ) двух составов:
СПБТЗ - зимнюю, содержащую не менее 75% пропана и не более 20% бутана;
СПБТЛ - летнюю, содержащую не менее 34% пропана и не более 60% бутана.

Помимо пропана и бутана, в состав топлива входят также метан, этан, этилен, пропилен, бутилен, пентан и другие, общее содержание которых в смеси составляет 5…6%.

Пропановые фракции (пропан и пропилен) обеспечивают необходимое давление в газовом баллоне автомобиля. Бутановая составляющая (нормальный бутан, изобутан, бутилен, изобутилен) - наиболее калорийный и легкосжижаемый компонент сжиженных газов.

Важнейшими свойствами сжиженных газов, определяющими их пригодность для использования в качестве топлива для газобаллонных автомобилей, являются: теплота сгорания пропана - 45,7 (10972), бутана - 45,2 (10845), бензина - 43,8 (10500) МДж/кг (ккал/кг); плотность жидкого пропана - 0,509, а бутана - 0,582 кг/м3; октановое число у пропана - 120, у бутана - 93.

Газ не должен содержать механических примесей, водорастворимых кислот, щелочей, смол и других вредных примесей.

Давление насыщенных паров для смеси сжиженных газов колеблется в пределах от 0,27 МПа (2,7 кгс/см2) при температуре - 20 °С до 1,6 МПа (16 кгс/см2) при температуре +45 °С.

Сжиженные газы обладают большим коэффициентом объемного расширения. Поэтому баллоны следует заполнять газом не более чем на 90% их объема. Остальные 10% составляет объем паровой подушки, без которой даже незначительное повышение температуры газа приводит к резкому увеличению давления в баллоне (примерно 0,7 МПа, или 7 кгс/см2 на ГС повышения температуры сжиженного газа).

Газобаллонная установка. Отечественная автомобильная промышленность выпускает газобаллонные грузовые автомобили ЗИЛ-138, ГАЗ-53-07 и автобусы ЛАЗ-695П и ЛИАЗ-677Г. Все эти автомобили отличаются от базовых моделей ЗИЛ-130, ГАЗ-53А, ЛАЗ-695Н и ЛИАЗ-677 наличием газобаллонной установки, а также модифицированным газовым двигателем, имеющим более высокую, чем базовый карбюраторный двигатель, степень сжатия.

Для обеспечения возможности передвижения автомобиля при неисправности газобаллонной установки или отсутствии газа в системе питания имеется карбюратор, на котором двигатель может развивать мощность, достаточную для движения автомобиля с полной нагрузкой со скоростью 30…40 км/ч, и бензиновый бак. Длительно работать на бензине не разрешается.

Схема газобаллонной установки автомобиля ЗИЛ-138 показана на рис. 32. В нее входят: газовый баллон с арматурой, магистральный вентиль, испаритель газа, газовый фильтр, редуктор, манометр, смеситель, воздушный фильтр, газопроводы. Для работы на бензине имеются карбюратор и бак.

Рис. 32. Схема газобаллонной установки автомобиля ЗИЛ-138:
1 - воздушный фильтр; 2 - трубка подвода воды к испарителю; 3 - шланг высокого давления от испарителя к фильтру газа; 4 - испаритель газа; 5 - шланг подвода воды от испарителя к компрессору; 6 - газопровод системы холостого хода; 7 - шланг высокого давления от магистрального вентиля к испарителю газа; 8 - труба подвода газа к смесителю; 9 - дозирующе-экономайзерное устройство редуктора; 10 - газовый редуктор; 11 - измерительный преобразователь давления газа; 12 - фильтр редуктора; 13 - манометр газового редуктора; 14 - магистральный вентиль; 15 - бензиновый бак; 16 - фильтр; 17 - смеситель газа; 18 - проставка под смеситель; 19 - расходный вентиль паровой фазы; 20 - контрольный вентиль максимального наполнения баллона; 21 - измерительный преобразователь указателя уровня жидкости в баллоне; 22 - предохранительный клапан; 23 - наполнительный вентиль; 24 - расходный вентиль жидкостной фазы; 25 - баллон; 26 - карбюратор; 27 - шланг, соединяющий вакуумные пространства экономайзера и разгрузочного устройства редуктора с впускным трубопроводом двигателя.

Магистральный вентиль предназначен для перекрытия с места водителя подачи газа из баллона к испарителю, газовому редуктору и смесителю.

Испаритель газа преобразует жидкую фазу топлива в газообразную. Газ проходит по каналу в алюминиевом корпусе смесителя, подогревается циркулирующей через полость корпуса водой из системы охлаждения двигателя и испаряется.

Газовый фильтр, оснащенный фильтрующим элементом, состоящим из металлической сетки и пакета войлочных пластин, очищает газ, поступающий к редуктору, от механических примесей - окалины и ржавчины. Фильтр установлен на входном штуцере редуктора.

Редуктор служит для снижения давления, поступающего к смесителю газа до близкого к атмосферному. При остановке двигателя редуктор автоматически прекращает подачу газа к смесителю.

В цилиндрическом корпусе редуктора размещены камера А первой ступени, камера Б второй ступени и кольцеобразная камера В вакуумного разгружателя.

Одна из стенок камеры первой ступени образована резиновой диафрагмой, края которой зажаты между корпусом редуктора и крышкой. Со стороны крышки на диафрагму постоянно давит сжатая пружина, стремящаяся прогибать диафрагму внутрь корпуса редуктора (вверх). Центральная часть диафрагмы связана коленчатым рычагом с клапаном, благодаря чему при прогибании диафрагмы внутрь рычаг открывает клапан, а при прогибании ее наружу закрывает его.

В камере второй ступени находится зажатая по окружности между верхней частью корпуса и крышкой диафрагма. Ее центральная часть соединена рычагом с клапаном второй ступени. Прогибание диафрагмы вниз вызывает открытие клапана второй ступени, прогибание ее вверх - закрытие клапана. Действующая на шток диафрагмы пружина стремится выгибать диафрагму вверх.

Полости под крышками диафрагм камер первой и второй ступеней сообщены с атмосферой, а следовательно, снаружи на обе диафрагмы постоянно действует атмосферное давление.

В камере В разгружателя установлена кольцевая диафрагма, на которую действует пружина, выгибающая диафрагму вверх.

Снизу к корпусу редуктора прикреплен корпус дозирующе-экономайзерного устройства, в котором размещены основное дозирующее устройство редуктора и экономайзер с пневматическим приводом.

В дозирующее устройство входят дозирующие отверстия постоянного и переменного сечения, клапан-регулятор экономической регулировки газовой смеси и регулировочный винт мощностной регулировки. Клапан с пружиной и диафрагма с пружиной являются деталями экономайзера.

Корпус дозирующе-экономайзерного устройства имеет патрубок для выхода газа; штуцеры на крышке корпуса служат для соединения камеры В разгружателя с полостью под диафрагмой экономайзера и с впускным трубопроводом двигателя.

Редуктор крепят под капотом двигателя к передней стенке кабины на специальном кронштейне. Газ к редуктору подводится через газовый фильтр, укрепленный на штуцере. К штуцеру присоединяют трубку манометра, позволяющего контролировать давление в камере первой ступени. Патрубок соединяют газопроводом низкого давления со смесителем, а штуцер при помощи резиновой трубки с впускным трубопроводом двигателя.

Рис. 33. Газовый редуктор:
а -- устройство; б - схема действия; А - камера первой ступени; Б - камера второй ступени; В - камера вакуумного разгружателя; 1 - штуцер подвода газа; 2 - штуцер для присоединения манометра; 3 - клапан первой ступени; 4 и 5 - крышка диафрагмы и диафрагма камеры первой ступени; 6 - пружина диафрагмы первой ступени; 7 - регулировочная гайка; 8 - рычаг привода клапана первой ступени; 9 - клапан второй ступени; 10 - клапан-регулятор; 11 - клапгн экономайзера; 12 - пружина клапана; 13 я 18 - штуцеры; 14 - крышка корпуса

При открывании магистрального вентиля газ из баллона начинает поступать через испаритель, фильтр, газовый фильтр редуктора (рис. 33), входной штуцер и открытый клапан в камеру А первой ступени редуктора. По мере поступления газа давление в камере повышается, и, когда оно достигает требуемой величины (избыточное или манометрическое давление должно быть 0,17…0,18 МПа или 1,7… 1,8 кгс/см2), диафрагма 5 выгибается вниз и рычажный привод закрывает клапан, прекращая доступ газа в редуктор. Если давление в камере первой ступени падает, пружина прогибает диафрагму вверх, клапан открывается и в камеру снова начинает поступать газ. Таким образом, в камере первой ступени автоматически устанавливается постоянное давление, величина которого зависит от силы натяжения пружины.

Предохранительный клапан предотвращает повреждение диафрагмы камеры первой ступени редуктора, которое может произойти вследствие нарушения герметичности закрытия ее клапана. Если клапан камеры первой ступени закрывается неплотно, газ из баллона все время поступает в эту камеру и давление в ней может превысить допустимую величину. Пружина предохранительного клапана отрегулирована на давление ло 0,45 МПа (4,5 кгс/см2). При большем давлении предохранительный клапан открывается и выпускает часть газа из камеры первой ступени наружу.

Пока двигатель не работает, клапан камеры второй ступени закрыт и газ в нее из камеры первой ступени не поступает. При пуске двигателя в камере второй ступени, соединенной газопроводом со смесителем, образуется разрежение, и диафрагма, прогибаясь внутрь, через рычажный привод откроет клапан 9. Газ из камеры первой ступени начнет перетекать в камеру второй ступени, давление в которой по мере поступления в нее газа повышается. Когда давление поднимется до близкого к атмосферному, клапан закроется и поступление газа из камеры первой ступени прекратится.

Действует разгружатель следующим образом. Когда двигатель не работает, давление пружины разгружателя передается через упор на тарелку диафрагмы, увеличивая силу закрытия клапана второй ступени.

Во время работы двигателя на малых частотах холостого хода и при малых нагрузках (дроссель смесителя прикрыт) в камере В разгружателя, соединенной трубкой с впускным трубопроводом двигателя, создается сильное разрежение и диафрагма прогибается вниз. Упор прекращает давление на диафрагму камеры второй ступени, вследствие чего на клапан второй ступени действует только одна пружина, позволяющая ему открываться даже при отсутствии разрежения в камере второй ступени.

Благодаря этому при малых частотах холостого хода и малых нагрузках газ из камеры второй ступени поступает к смесителю под избыточным давлением 100…200 Па (10…20 мм вод. ст.). По мере возрастания нагрузки двигателя давление газа на выходе из редуктора и в камере второй ступени понижается, и в ней создается небольшое разрежение.

Дозирующе-экономайзерное устройство регулирует количество газа, поступающего к смесителю, а следовательно, и поддерживает необходимый состав газовоздушной смеси.

При малых и средних нагрузках двигателя, когда дроссель смесителя открыт не полностью, в задроссельном пространстве смесителя поддерживается значительное разрежение. Поскольку полость под диафрагмой экономайзера сообщена с задроссельным пространством, в ней также образуется разрежение, под действием которого диафрагма прогибается вниз и клапан экономайзера закрывается. На этом режиме газ из камеры второй ступени редуктора проходит к выходному патрубку через отверстие постоянного сечения и отверстие, сечение которого можно изменять вращением клапана-регулятора; положение последнего подбирают с расчетом получения экономичной работы двигателя.

При больших нагрузках, когда открытие дросселя смесителя приближается к полному, разрежение в задроссельном пространстве и в полости под диафрагмой экономайзера уменьшается. Под действием пружины диафрагма выгибается вверх и открывает клапан, после чего к выходному патрубку редуктора начинает поступать дополнительное количество газа через отверстие постоянного сечения и отверстие переменного сечения. Количество дополнительно поступающего газа регулируют вращением винта, добиваясь получения от двигателя максимальной мощности.

Смеситель и карбюратор. Смеситель служит для приготовления смеси газа и воздуха. Смеситель двухкамерный, обе камеры работают одновременно и параллельно на всех режимах.

Рис. 34. Смеситель:
1 - газоподводящий патрубок; 2 - обратный клапан; 3 - воздушная заслонка; 4 - газовая форсунка; 5 - диффузор; 6 и 10 - распыливающие отверстия системы холостого хода; 7 - штуцер подвода газа из камеры второй ступени редуктора; 8 и 9 - регулировочные винты системы холостого хода; 11 - дроссель.

Газ поступает к форсунке от редуктора через патрубок и обратный клапан. В нижней части смесительной камеры расположены распыливающие отверстия системы холостого хода, сечение которых можно изменять при помощи регулировочных винтов.

Смеситель снабжен центробежно-вакуумным ограничителем частоты вращения коленчатого вала двигателя, однотипным с устанавливаемым на карбюраторном двигателе ЗИЛ-130.

Смеситель присоединен к впускному трубопроводу двигателя через проставку, к которой прикреплен карбюратор. Работает смеситель следующим образом.

При пуске кратковременно закрывают воздушную заслонку (рис. 34), чтобы усилить разрежение в диффузоре и вызвать усиленный приток газа через форсунку.

На малых частотах холостого хода газ поступает из редуктора через штуцер к распыливающим отверстиям под действием сильного разрежения, образующегося в зоне за прикрытым дросселем.

Во время работы двигателя под нагрузкой газ поступает в смесительную камеру через форсунку. Состав смеси при этом регулируется дозирующе-экономайзерным устройством газового редуктора.

Когда двигатель работает на газе, воздушная заслонка, дроссель карбюратора и топливный (бензиновый) кран должны быть закрыты.

Если требуется перевести двигатель на бензин, необходимо закрыть магистральный вентиль газобаллонной установки и выработать весь газ из приборов, расположенных после этого вентиля, до остановки двигателя. Затем закрыть обе заслонки смесителя и пустить двигатель на бензине, как обычный карбюраторный двигатель.

Для последующего перехода на газ закрывают топливный (бензиновый) кран и вырабатывают бензин из карбюратора. После этого закрывают воздушную заслонку и дроссель карбюратора и пускают двигатель на газе, предварительно открыв магистральный вентиль. Работа двигателя одновременно на бензине и газе не допускается.

Пускают на газе холодный двигатель при открытом паровом и закрытом жидкостном расходных вентилях баллона. Когда двигатель прогреется, открывают жидкостной и закрывают паровой расходные вентили.

При низких температурах окружающего воздуха, когда пуск холодного двигателя на газе затруднен, рекомендуется сначала пустить и прогреть двигатель на бензине, а затем перевести его на газ, как сказано выше.

Газопроводы и их соединения. Газопроводы высокого давления (от баллона до редуктора) изготовляют из стальных или медных трубок с толщиной стенок около 1 мм и наружным диаметром 10… 12 мм. Газопроводы соединяют с приборами газобаллонной установки при помощи ниппельных соединений.

Газопроводы низкого давления (от редуктора до смесителя) выполняют из тонкостенных стальных труб и газостойких резиновых шлангов большого сечения. Соединяют их стяжными хомутами.

Основные неисправности газобаллонной установки: утечка газа через неплотности соединения; неплотное закрытие вентилей и клапанов; засорение газового фильтра; нарушение регулировки редуктора, вызывающее чрезмерное обогащение или обеднение газовоздушной смеси; нарушение регулировки системы холостого хода смесителя.

Правила безопасного труда на газобаллонных автомобилях. При утечке газ образует с воздухом взрывчатые смеси. В случае попадания на кожу сжиженный газ интенсивно испаряется и может вызвать термические ожоги (обмораживание).

Вдыхание испаренного газа вызывает отравление. Поэтому необходимо внимательно следить за герметичностью всех соединений газобаллонной установки. Значительная утечка обнаруживается на слух (по шипению газа), чтобы обнаружить незначительную утечку, смачивают места соединений мыльной водой. При утечке нельзя ставить автомобиль в закрытое помещение.

Возле автомобиля нельзя пользоваться открытым огнем.

При необходимости подтягивания соединений трубопроводов установки следует предварительно закрыть расходные вентили баллонов и выработать газ до остановки двигателя.

К атегория: - Автомобили и трактора

Выпускаемые ранее автомобили с га­зобаллонными установками имели уни­версальные двигатели, работающие на газе и бензине. Такая универсальность
двигателей не позволяла полностью ис­пользовать преимущества газообразно­го топлива. В настоящее время неко­торые заводы страны вновь вернулись
к производству и испытанию газобал­лонных автомобилей, при использова­нии которых значительно снижается по­требность автомобильного транспорта
в жидком топливе. Двигатели газобал­лонных автомобилей оснащены как га­зовой, так и бензиновой аппаратурой;
последняя является аварийной (резерв­
ной). В настоящее время для работы на
сжиженном газе выпускаются газобал­лонные автомобили ГАЗ-52-07, ГАЗ-52-09, ГАЗ-53-07, ГАЗ-24-07
и ЗИЛ-138, на сжатом газе ГАЗ-52-27,
ГАЗ-53-27 и ЗИЛ-138А.

§ 40. Топливо для газобаллонных автомобилей

Горючие газы, используемые в газо­баллонных " автомобилях, могут быть естественными и искусственными. Есте­ственные (природные) газы добывают из подземных газовых или нефтяных скважин. Искусственные газы являются побочными продуктами, получаемыми на химических или металлургических заводах.

Установлены (ГОСТ 20448-80) сле­дующие марки газов: СПБТЗ - смесь пропана и бутана техническая зимняя; СПБТЛ - смесь пропана и бутана тех­ническая летняя; БТ - бутан техниче­ский. Сжиженный пропан - бутановый газ согласно стандарту должен содер­жать пропана зимой не менее 90 %, а ле­том - не менее 70 %. Газ не должен со­держать механических примесей, воды, водорастворимых кислот, щелочей, смол и других загрязняющих веществ.

Газообразное топливо по сравнению с жидким обеспечивает следующие пре­имущества:

более высокое октановое число, что позволяет значительно повысить сте­пень сжатия, увеличить мощность и эко­номичность двигателя;

меньшее количество токсических веществ в отработавших газах в результа­те лучшего сгорания газообразного топлива;

большой срок службы двигателей из-за отсутствия конденсации топлива и смыва масла со стенок цилиндров;

повышенный срок службы масла в двигателе, так как оно не разжижается топливом и меньше загрязняется меха­ническими примесями;

большой срок службы свечей зажига­ния и глушителя шума системы выпуска вследствие незначительного нагарообразования.

Сжиженные газы, обладая плот­ностью, большей плотности воздуха, могут при негерметичности цистерн, баллонов и других сосудов скапливать­ся в пониженных и заглубленных местах и создавать взрывную и пожарную опасность. Поэтому нужно тщательно контролировать все соединения и поло­сти, чтобы избежать утечки газа (сжи­женного или сжатого).

Сжатыми (сжимаемыми) называют газы, которые при обычной температу­ре окружающей среды и высоком давле­нии до 20 МПа сохраняют газообраз­ное состояние. Природный газ, приме­няемый для газобаллонных автомоби­лей, работающих на сжатых газах, состоит в основном из метана. Можно использовать и промышленные газы: светильный, коксовый и синтез-газ, но нужно помнить, что они содержат окись углерода (СО) и поэтому ядовиты.



Сжиженными (сжижаемыми) газами называют такие, которые переходят из газообразного состояния в жидкое при нормальной температуре и небольшом давлении до 1,6 МПа. К ним относят смеси углеводородов, получаемых при переработке нефти. Для газобаллонных автомобилей использование сжиженных газов предпочтительнее, чем сжатых.

Газобаллонные автомобили, рабо­тающие на сжиженных газах, по сравне­нию с автомобилями, работающими на сжатых газах, имеют следующие пре­имущества:

больше грузоподъемность автомоби­ля, так как баллоны легче и их число меньше;

меньше рабочее давление в газобал­лонной установке, а следовательно, на­дежнее и безопаснее работа на таком автомобиле;

выше теплотворная способность газо-воздушной смеси, что способствует уве­личению мощности двигателя;

больше концентрация тепловой энер­гии в единице объема, что позволяет увеличить радиус действия автомобиля;

проще заправочные станции;

проще перевозка сжиженных газов на большие расстояния и различными ви­дами транспорта. Для всех газобал­лонных автомобилей (независимо от то­го, на каком газе они работают) харак­терно: бездетонационная работа двига­теля, значительно меньший износ дета­лей и более полное сгорание топлива. Однако сложнее обслуживание и экс­плуатация таких автомобилей, так как требуется тщательное соблюдение пра­вил техники безопасности.

Газобаллонные автомобили имеют также и недостатки:

уменьшается мощность двигателя, ес­ли он не переделан для работы на газе;

снижается полезная грузоподъемность автомобиля вследствие наличия балло­нов;

более трудоемко техническое обслу­живание автомобиля из-за некоторых ограничений.

Гарантийный срок хранения сжижен­ного газа три месяца со дня изготовле­ния. По истечении гарантийного срока хранения сжиженный газ должен быть проверен на соответствие требованиям действующего стандарта.

§ 41. Газобаллонные установки

Рабочий цикл у двигателя, работаю­щего на газе, такой же, как и у карбю­раторного, но устройство и работа при­боров системы питания существенно от­личаются.

Установка для сжатого газа. В уста­новку (рис. 83) входят стальные бал­лоны 1 для сжатого газа; наполни­тельный 6, расходный 8 и маги­стральный 20 вентили; подогреватель

Схема автомобильной газобаллонной установки для сжатого газа:

/ - баллон; 2 - угольник баллона; 3 - газопровод высокого давления; 4 - тройник баллона;

5- крестовина наполнительного вентиля;

6 - наполнительный вентиль; 7 - угольник вентиля; Я - расходный вентиль; 9 - топливный бак; 10 и 11 - манометры соответственно высокого


и низкого давления; 12 - газовый фильтр;

13 - двухступенчатый газовый редуктор;

14 - дозирующее устройство газового редуктора;

15 - газопровод низкого давления;

16 - карбюратор-смеситель; 17 - топливопровод; 18 - топливный насос; 19 - подогреватель сжатого таза; 20 - магистральный вентиль; 21 - двигатель; 22 - трубка I 4, - Г $ 1

Схема газобаллонной установки для сжиженного газа:

/ - магистральный вентиль; 2 - манометр баллона; 3 - паровой вентиль; 4 - предохранительный клапан; 5 - баллон для сжиженного газа; 6 - контрольный вентиль; 7 - наполнительный вентиль баллона; # - указатель уровня сжиженного газа; 9 - жидкостный вентиль; 10 - манометр редуктора; 11 - двигатель; 12 - карбюратор; /5 -смеситель газа; 14 - бак для бензина; 15 - газовый редуктор; 16 - испаритель сжиженного газа; 17 - штуцер для подвода горячей воды; 18- штуцер для отвода воды; 19 - кран для слива воды

19 сжатого газа; манометры 10 н 11 со­ответственно высокого и низкого давле­ния; редуктор 13 с фильтром 12 и дози­рующим устройством 14; газопроводы 3 и 75 соответственно высокого и низко­го давления; карбюратор-смеситель 16; трубка 22, соединяющая разгрузочное устройство редуктора с впускным тру­бопроводом двигателя.

Баллоны объемом по 50 дм 3 располо­жены под грузовой плач формой. И горловины направлены в разные сто­роны, благодаря чему увеличивается длина и упругость газопровода 3, что снижает вероятность его поломки при перекосах рамы. Во время работы дви­гателя вентили 8 и 20 открыты. Сжатый газ под большим давлением проходит в подогреватель 19 и через фильтр 12 поступает в двухступенчатый газовый редуктор 13. По пути к редуктору сжатый газ должен быть подогрет, так как иначе может замерзнуть вода, выде­ляющаяся при снижении давления газа. В редукторе давление газа снижается примерно до 100 кПа. Затем газ, пройдя дозирующее устройство 14, по газопро­воду 15 поступает к карбюратору-смеси­телю 16, где образуется газовоздушная смесь. Разрежение, создаваемое в ци­линдре при такте впуска, передается к карбюратору-смесителю, и горючая смесь поступает в цилиндры двигателя. Работу газобаллонной установки кон­тролируют следующим образом. По

манометру 10 определяют давление и количество газа, находящегося в бал­лонах. Только при высоком давлении, равном 20 МПа, обеспечивается доста­точное количество сжатого газа в бал­лоне. Затем по манометру 11 опреде­ляют давление газа в первой ступени редуктора.

Наполнение газобаллонной установки газом происходит через вентиль б, уста­новленный в крестовине 5 баллона. Для работы на жидком топливе (бензине) га­зобаллонный автомобиль имеет топ­ливный бак 9, фильтр-отстойник, топ­ливный насос 18 и топливопроводы 17.

Установка для сжиженного газа. В установку автомобиля ГАЗ-53-07 вхо­дят баллон 5 (рис. 84), магистральный вентиль 1, испаритель 16, газовый ре­дуктор 15, смеситель 13, контрольные манометры 2 и 10 и другие детали. Бал­лон расположен под платформой с ле­вой стороны автомобиля и укреплен на кронштейнах двумя стяжными лентами. Испаритель и редуктор установлены под капотом двигателя. Сжиженный газ перед использованием испаряют, т. е. переводят в газообразное состояние. Для этого из баллона 5 жидкость при открытом вентиле 9 поступает через ма­гистральный вентиль 1 к испарителю 16, подогреваемому горячей водой из системы охлаждения двигателя. Сжи­женный газ испаряется и в парообраз­ном состоянии поступает в фильтр, а затем в двухступенчатый редуктор 75, где давление газа снижается до 100 кПа. Далее газ проходит через дозирующее экономайзерное устройство, смеситель 13 газа и при такте впуска поступает в цилиндры двигателя. На автомобиле установлен газовый двигатель, имею­щий повышенную (8,5) степень сжатия. Работу газобаллонной установки кон­тролируют по манометрам 2 и 10: первый показывает давление газа в бал­лоне, а второй - в редукторе.

Для заправки баллона служат напол­нительный 7 и контрольный 6 вентили. Баллон нельзя наполнять сжиженным газом полностью, так как с увеличением температуры окружающего воздуха газ расширяется и давление в баллоне повышается. Поэтому баллон наполняют сжиженным газом только на 90% объе­ма, а 10% объема оставляют для паров. Давление в баллоне зависит не от коли­чества находящегося в нем сжиженного газа, а лишь от давления его паров, на которое оказывают влияние температу­ра окружающей среды и состав газа.

Приборы и арматура

" Баллоны. Резервуарами для сжатого
или сжиженного газа являются бал­лоны. Для сжатого газа баллоны изго­товляют из бесшовных труб (материал
труб - легированная сталь) и подвер­гают термической обработке (закалке
и отпуску) для повышения прочности
и обеспечения безосколочности при раз-
рушении] На переднем днище баллона
5 (рис. 84) расположены необходимые
вентили и приборы; на баллоне выбиты
клейма с указанием завода-изготовите­ля, массы, объема, даты (месяц и год)
изготовления, давлений - рабочего

и при испытании, года следующего ис­пытания, а также клеймо контролера ОТК (отдела технического контроля) завода.

д Все баллоны соединяют газопровода­ми высокого давления. Газопроводы от баллона до редуктора изготовлены из медных или стальных трубок. От редук­тора до смесителя газопроводом слу­жит шланг из бензомаслостойкой резины.

Наполнительный и контрольный венти­ли. Первый вентиль (рис. 85, а) служит для заправки баллона, а второй (рис. 85, б) - для контроля за макси­мальным наполнением баллона жид­костью. Наполнительный вентиль мем­бранного типа состоит из корпуса /, крышки 4 и штока 5. Один конец штока соединен с зажимом мембраны и клапа­ном 2; на другом конце есть маховик 6. В корпусе вентиля установлен обратный клапан 8 с пружиной 9 и ввернута пробка 7.

Для наполнения баллона сжиженным газом отвертывают пробку 7 и в корпус ввертывают наконечник заправочного шланга. Вращая маховик 6, открывают наполнительный вентиль и заправляют баллон. Затем отвертывают маховик 14 контрольного вентиля. Появление из контрольного отверстия 11 жидкого топлива означает, что баллон заправлен на 90% своего объема. Обратный кла­пан 8, установленный в корпусе 1 на­полнительного вентиля, предотвращает выход газа из баллона при отсоедине­нии заправочного шланга. После окон­чания заправки баллона закрывают на­полнительный вентиль, отсоединяют га­зонаполнительный шланг, ввертывают в корпус пробку 7 и закрывают кон­трольный вентиль после прекращения выхода из него жидкого топлива. ^ Предохранительный клапан и рас­ходный вентиль. Предохранительный клапан, предотвращающий увеличение


давления газа в баллоне выше 1,6 МПа, состоит из корпуса 3 (рис. 86), клапана 5, штока 2, пружины 4 и регулиро­вочных прокладок. Если в паровом про­странстве баллона давление превысит 1,6 МПа, то газ, преодолевая усилие пружины 4, откроет клапан 5 и по отвер­стию 6 выйдет в атмосферу.расходный вентиль мембранного типа используют для подачи газа, находящегося в жидкост­ной или паровой фазах. На баллоне (см. рис. 84) установлено два расходных вен­тиля: паровой 3 и жидкостный 9.

Расходный вентиль состоит из корпу­са 8 (рис. 86), крышки 13, клапана И, мембраны 12 и штока 75. Клапан опи­рается на седло 9, ввернутое в корпус. Одной стороной шток соединен с зажи­мом 14 мембраны 12; на другом конце штока установлен маховик 16. При ввертывании крышки 13 в корпус она плотно прижимает к нему через про­кладку мембрану. При отвертывании маховика вместе с клапаном переме­щается зажим мембраны, в результате чего открывается путь газу (см. стрел­ки), находящемуся в жидкостной или паровой фазах.

а - наполнительный; б - контрольный; 1 и 12-

корпуса; 2 - клапан; 3 - мембрана; 4 - крышка;

5 - шток; 6 и 14 - маховики; 7 - пробка;

8 - обратный клапан; 9 -пружина;

10 - уплотнитель; 11 - контрольное отверстие;

13 - штифт




Предохранительный клапан и расходный вентиль: / - регулировочные прокладки; 2 и 15 - штоки;

3 и 8 - корпуса соответственно клапана и вентиля;

4- пружина предохранительного клапана; 5 и // - клапаны; 6 - отверстие для выхода газа;

7 и 10 - уплотнители клапанов; 9 - седло клапана; 12- -мембрана; 13 - крышка вентиля; 14 - зажим мембраны;-16 - маховик расходного вентиля

Датчик уровня сжиженного газа. На баллоне установлен (см. рис. 84) датчик уровня сжиженного газа, выполненный по типу указателя уровня жидкого топ­лива (бензина)Г[ При снижении уровня жидкости в баллоне поплавок опускает­ся и перемещается ползунок реостата, изменяющего сопротивление в цепи. На шкале прибора будет указан уровень сжиженного газа в баллоне. А Магистральный вентиль. Являющийся расходным, магистральный вентиль гер­метично перекрывает газопровод при неработающем двигателе и не допускает утечки газа в окружающую среду]. Магистральный вентиль 3 мембранного типа расположен в кабине (рис. 87). Вентиль ввернут в переходный штуцер (см. рис. 84), имеющий два отверстия: к одному подсоединяют газопровод от баллона, ко второму - манометр высо­кого давления. Жиклер, имеющийся в штуцере, предохраняет манометр 2 от резкого увеличения давления. Корпус вентиля имеет также штуцер для при­соединения газопровода к испарителю 16. Магистральный вентиль необходимо открывать полностью во избежание торможения газа при его проходе.

Газовый редуктор. При открытом ма­гистральном вентиле газ поступает в ре­дуктор, который уменьшает его давле­ние, автоматически изменяет количество газа, поступающего к смесителю (в за­висимости от режима работы двигате­ля), и быстро выключает подачу газа при любой остановке двигателя. В кор­пус редуктора ввернут сетчатый фильтр, очищающий газ и предохраняющий га­зовую аппаратуру и двигатель от про­никновения в них пыли, окалины и дру­гих механических и иных примесей/]

Редуктор (рис. 88,а) состоит из двух ступеней, клапанов 8, 12 и 13, трех мем­бран 2, //, 75 и других деталей. Редук-


Рис. 87.

Расположение магистрального вентиля и манометров в кабине водителя: / - манометр низкого давления; 2 - манометр высокого давления; 3 -магистральный вентиль; 4 - переключатель датчика указателя уровня сжиженного газа

тор имеет шесть полостей А - Е. Если двигатель не работает и магистральный вентиль закрыт, то клапан 8 первой ступени открыт, а клапан 12 второй ступени закрыт. В этом случае во всех полостях редуктора давление равно ат­мосферному. Клапан 8 открыт, так как пружина 9 выгибает мембрану 77 вверх и повертывает рычаг 10, освобождая клапан первой ступени. Клапан 12 за­крыт под действием конической 5 и ци­линдрической 3 пружин. Пружина 5 че­рез три упора 18 действует на мембрану


2, соединенную со штоком 4. Пружина 3 перемешает вверх шток 4, вследствие чего мембрана 2 выгибается. Шток, свя­занный с рычагом 77, прижимает кла­пан 12 к седлу.

При открытом магистральном венти­ле газ через фильтр и клапан 8 первой ступени проходит в полость Г, давление в которой возрастает от 100 до 200 кПа. Заполняя полость первой ступени, газ начинает давить на мембрану 77. Она прогибается вниз, преодолевая сопроти­вление пружины 9, и через коленчатый



Элементы газобаллонной установки: а - двухступенчатый редуктор; б - газовый смеситель; / - дозатор; 2 - мембрана второй ступени; 3 - цилиндрическая пружина разгрузочного устройства; 4 - шток;

5 - коническая пружина разгрузочного устройства;

6 - мембрана разгрузочного устройства;

7 - предохранительный клапан; 8 - клапан первой ступени; 9 - пружина первой ступени; 10 - рычаг клапана первой ступени; 11 - мембрана первой ступени; 12 - клапан второй ступени; 13 - клапан экономайзера; 14 - пружина мембраны;

15 - мембрана дозирующего экономайзерного устройства; 16 и 19 - каналы; 17 - рычаг клапана второй ступени; 18 - упор; 20 - выходной патрубок; 21 - ограничитель частоты вращения


коленчатого вала двигателя; 22 - газовый смеситель; 23 - рычаг дроссельных заслонок; 24 - газоподводящий патрубок; 25 - обратный клапан; 26 - корпус смесителя; 27 - дроссельная заслонка; 28 - регулировочный винт минимальной частоты вращения" холостого хода; 29 - регулировочный винт общей подачи газа в систему холостого хода; 30 - штуцер для подвода газа в систему холостого хода; 31 -диффузор; 32 - газовая форсунка; 33 - воздушная заслонка; А - полость разгрузочного устройства; Б - полость атмосферного давления; В - полость второй ступени (низкого давления газа); Г - полость первой ступени (высокого давления газа); Д -полость атмосферного давления первой ступени; Е - полость дозирующего экономайзерного устройства

рычаг 10 закрывает клапан 8. Положе­ние клапана 8 определяется соотноше­нием действующих на него сил: с одной стороны, давления, поступающего из магистрали газа, который стремится от­крыть клапан, а с другой - разности давления газа в полости Г и силы пру­жины 9 (эта разность сил стремится за­крыть клапан). Для периодического за­крытия и открытия клапана 8 давление газа в полости Г должно быть то боль­ше, то меньше силы сопротивления пру­жины 9. Таким образом, при нерабо­тающем двигателе первая ступень ре­дуктора автоматически перекрывает га­зовую магистраль, т. е. выполняет функцию клапана.

Во время пуска двигателя и его ра­боты разрежение из впускного трубо­провода через патрубок 20 и канал 16 передается в полость В второй ступени и в полость А разгрузочного устрой­ства. Кольцевая мембрана 6, преодоле­вая сопротивление конической пружины 5, прогибается вниз и отводит упоры 75 от мембраны 2, в результате чего раз­гружаются мембрана 2 и клапан 12. Ра­бота разгрузочного устройства и разре­жение, создаваемое в полости В, приво­дят к тому, что мембрана 2 прогибается вниз, преодолевая сопротивление пру­жины 3. Клапан 12 открывается под действием опускающегося вниз штока 4 и давления газа в полости Г.

При открытии клапана 12 газ перете­кает из полости Г в полость В, создавая в ней избыточное давление 50 - 100 Па при малых нагрузках двигателя. С уве­личением нагрузки расход газа возра­стает и в полости В создается разреже­ние 200 - 300 Па. Мембрана 2 сильнее прогибается вниз, и открытие клапана 12 увеличивается. Этой мембраной регу­лируют подачу газа к выходному па­трубку 20 в зависимости от разрежения в газовом смесителе. У исправного ре­дуктора клапаны первой и второй сту­пеней автоматически закрываются при каждой остановке двигателя.

Подача газа должна быть такой, чтобы двигатель работал с наибольшей экономичностью. Для получения макси­мальной мощности газовоздушную смесь несколько обогащают, для чего служит экономайзер, имеющийся в ре­дукторе, три средней нагрузке двигате­ля дроссельная заслонка смесителя от­крыта примерно наполовину, и разреже­ние, создающееся во впускном трубо­проводе, по каналу 16 передается в полость Е экономайзера. Мембрана 15 дозирующего экономайзерного устройства, преодолевая сопротивление пружины 14, удерживает клапан 13 в за­крытом положении. Для получения мак­симальной мощности дроссельную за­слонку открывают полностью. Количе­ство газовоздушной смеси, поступаю­щей в цилиндры, увеличивается, но разрежение в полости Е снижается. Пружина 14 выгибает мембрану вверх и открывает клапан 13 экономайзера. Дополнительная порция газа поступает по каналу 19 в выходной патрубок 20, и газовоздушная смесь обогащается.

Если в полости Г давление газа поче­му-либо возрастет до 450 кПа, то от­кроется предохранительный клапан 7 и газ выйдет в атмосферу. При увеличе­нии давления в полости В мембрана 2 выгибается вверх и через систему ры­чагов закрывает клапан 12.

Газовый смеситель. Двигатель имеет двухкамерный газовый смеситель (рис. 88,6), который работает только на газообразном топливе. Подача газа на режиме холостого хода осуществляется через два регулируемых отверстия кру­глого сечения, расположенных ниже дроссельных заслонок. При переходе на повышенную частоту вращения газ по­дается еще из двух отверстий прямоу­гольного сечения (нерегулируемых), рас­положенных на уровне дроссельных за­слонок газового смесителя. Основная подача газа происходит через газоподводящий патрубок 24 и две форсунки 32. В канале газоподводящего патрубка установлен обратный клапан 25.

Карбюратор. Параллельно с газовым смесителем на двигателе установлен однокамерный карбюратор. В систему питания топливом (на бензине А-76) входят также топливный бак, фильтр-отстойник, топливный насос и фильтр тонкой очистки. Это позволяет автомобилю передвигаться в случае транспор­тирования его по железной дороге, от­сутствия газа или неисправности газо­баллонной аппаратуры, неустранимой в дорожных условиях. Полностью на­груженный автомобиль может развивать скорость до 30 - 40 км/ч. Однако пере­движение автомобиля ГАЗ-53-07 при работе на бензине на расстояние более 30 км не рекомендуется.

§ 43. Пуск и работа двигателя на газе

Пуск автомобильного двигателя, ра­ботающего на газе, так же как и на бен­зине, происходит при помощи стартера. Перед пуском двигателя выполняют следующее: проверяют наличие воды, масла и бензина в соответствующих си­стемах; осматривают газовую аппара­туру с арматурой и убеждаются в пол­ной ее исправности и герметичности; проверяют наличие газа в баллоне; от­крывают паровой вентиль баллона при пуске холодного двигателя или жид­костный вентиль при пуске прогретого двигателя; открывают магистральный вентиль и по показаниям манометров проверяют наличие газа в баллоне и в первой ступени редуктора. Пуск про­гретого двигателя, находящегося в ис­правном состоянии, обычно происходит с первых же попыток. Для этого по­вертывают ключ включения зажигания и стартера в положение пуска и держат до тех пор, пока двигатель не пустится (но не более 5 с). Затем ключ переводят в первое положение (включено зажига­ние).

Пуск холодного двигателя при умерен­ной температуре. Открывают маги­стральный и расходный (паровой) вен­тили. Для ускорения пуска заполняют газом газопровод от редуктора до сме­сителя принудительным открытием кла­пана второй ступени, кратковременно нажимая на стержень штока мембраны второй ступени. Вытягивают ручку управления дроссельными заслонками на половину длины хода, т. е. при­открывают заслонки. Выключают сце­пление и пускают двигатель поворотом ключа включения зажигания. Стартер включают не более чем на 5 с с интер­валами не менее 10-15 с. После пуска двигателя его прогревают на малой ча­стоте вращения. Как только температу­ра охлаждающей жидкости достигнет 60 °С, открывают расходный вентиль жидкостной фазы и закрывают рас­ходный вентиль паровой фазы. Недопу­стима длительная работа двигателя на паровой фазе, так как происходит ин­тенсивное испарение легких фракций сжиженного газа. При этом снижается температура жидкости в баллоне, он по­крывается инеем, ухудшается теплооб­мен с окружающей средой и т. д.

После прогрева двигателя кнопку руч­ного управления дроссельными заслон­ками вдавливают в щиток. Не рекомен­дуется при пуске двигателя прикрывать воздушную заслонку, так как это приво­дит к переобогащение газовоздушной смеси, а следовательно, и к затрудне­нию пуска двигателя.

Остановка двигателя. Останавливают двигатель выключением зажигания. При непродолжительной остановке двигате­ля магистральный вентиль можно не за­крывать. При длительной остановке его закрывают и вырабатывают газ из си­стемы, находящейся между маги­стральным вентилем и смесителем. Перед длительной стоянкой автомобиля закрывают расходные вентили жидкост­ной и паровой фаз и продолжают рабо­ту двигателя до остановки. Затем за­крывают магистральный вентиль.

Двигатель кратковременно может ра­ботать на бензине, но нельзя перехо­дить с одного топлива на другое при работающем двигателе. Для перевода двигателя с газа на бензин выполняют следующее: закрывают вентили и про­должают работу на газе до остановки двигателя; открывают бензиновый кра­ник, расположенный на фильтре тонкой очистки топлива; при помощи рычага ручной подкачки топливного насоса за­полняют поплавковую камеру карбюра­тора; открывают отверстие (выходное) карбюратора, для чего повертывают за­глушку и закрепляют ее гайкой-бараш­ком; соединяют тягу с рычагом дроссельной заслонки карбюратора; закры­вают воздушную заслонку смесителя; обычным способом пускают двигатель. При переводе двигателя с работы на бензине на работу на газе эти операции выполняют в обратной последователь­ности.

Основные требования техники безопас­ности. При эксплуатации автомобиля на сжиженном газе обязательна регуляр­ная, тщательная проверка герметично­сти газовой установки и немедленное устранение причин, вызывающих утечки газа. Значительные утечки обнаружи­вают на слух или по обмерзанию соеди­нения, пропускающего газ. Небольшие утечки определяют при помощи мыль­ного раствора или машинного масла. Бутано-пропановые газы, выходя на воз­дух в виде жидкости, интенсивно испа­ряются и отбирают теплоту из окру­жающей среды. Попадание струи сжи­женного газа на тело человека может вызвать обмораживание, поэтому такая возможность должна быть обязательно исключена.

Системы питания двигателей легковых автомобилей, работающих на сжиженном нефтяном газе, может работать как по принципу карбюрации, так и по принципу впрыска.

Система питания для сжиженного газа, работающая по принципу карбюрации

Система питания для сжиженного газа, работающая по принципу карбюрации, используется как на двигателях работающих на бензине, оборудованных карбюратором, так и на двигателях, оборудованных системой впрыска бензина. Система питания, работающая по принципу карбюрации при использовании ее на двигателях с электронным впрыском бензина, кроме основных элементов обычной системы впрыска содержит ресивер 2, редуктор-испаритель 6, серводвигатель для управления расходом газа 7, трубопровод для подачи газа в диффузор.

Рис. Система питания для сжиженного газа, работающая по принципу карбюрации, установленная на бензиновом двигателе с электронной системой впрыска:
1 – вентиляционная трубка для газового ресивера; 2 – ресивер с сжиженным газом; 3 – арматура газового ресивера; 4 – наполнительный клапан; 5 – клапан перекрытия газа; 6 – редуктор-испаритель; 7 – серводвигатель для управления расходом газа; 8 – электронный блок управления; 9 – переключатель вида используемого топлива «газ-бензин»; 10 – диффузор-смеситель; 11 – лямда-зонд; 12 – датчик разряжения; 13 – аккумуляторная батарея; 14 – выключатель зажигания; 15 – реле

При переключении на использование газа в качестве топлива, газ поступает из ресивера 2 в редуктор-испаритель, где происходит снижение давление газа и его испарение. В зависимости от сигналов, поступаемых от датчиков, блок управления выдает определенный сигнал на серводвигатель 7, определяющий расход газа на определенном режиме работы двигателя. Газ по трубопроводу поступает в диффузор, где смешивается с воздухом и проходит к впускному клапану, а затем в цилиндр двигателя. Для управления работой двигателя, предусматриваются отдельные блоки управления для работы двигателя на бензине и газе. Между обоими блоками управления идет обмен информацией.

Система питания для сжиженного газа, работающая по принципу впрыска

Система питания для сжиженного газа, работающая по принципу впрыска используется на двигателях, оборудованных системой впрыска бензина. Система питания для подачи сжиженного газа во впускной трубопровод содержит ресивер с газом, редуктор-испаритель 6, распределитель с шаговым электродвигателем, форсунок-смесителей 11.

Рис. Система впрыска сжиженного нефтяного газа (оборудование для работы на бензине не показано):
1 – электронный блок управления; 2 – диагностический разъем; 3 – переключатель для выбора типа используемого топлива; 4 – реле; 5 – датчик давления воздуха; 6 – редуктор-испаритель; 7 – клапан перекрытия подачи газа; 8 – распределитель с шаговым электродвигателем; 9 – прерыватель-распределитель или индуктивный датчик для определения частоты вращения коленчатого вала; 10 – лямбда-зонд; 11 – форсунки для впрыскивания газа

Газ из ресивера поступает в редуктор 6, где происходит испарение газа и снижение его давления. Ресиверы оборудуются наружным на­полнительным (впускным) клапаном (с приспособлением, отсекающим подачу газа при заполнении ресивера на 80% его объема) и соленоидным выпускным клапаном. Емкости ресиверов для легковых автомобилей составляют от 40 до 128 л.

После выбора типа используемого топлива, с помощью переключателя 3 и включении зажигания, при использовании газа, срабатывает клапан 7 на подачу газа, который выключается после отключения зажигания.

В электронный блок управления 1 от датчика 5 поступает информация о разряжении во впускном трубопроводе, зависящего от степени открытия дроссельной заслонки, информация о частоте вращения коленчатого вала от датчика или прерывателя-распределителя 9, информация о составе топливовоздушной смеси от лямбда-зонда 9. На основании полученной информации блок управления определяет поворот угол поворота шагового распределителя, регулирующего расход газа, поступающего через форсунки 11 во впускной трубопровод.