ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Путевой угол самолета. Магнитный путевой угол. КПМ – Конечный пункт маршрута

»
Высотой полета Н называется расстояние по вертикали от самолета до уровня, принятого за начало отсчета. Высота из­меряется в метрах. Знание высоты полета необходимо экипажу для выдерживания заданного профиля полета и предотвращения столкновения самолета с земной поверхностью и искусственными препятствиями, а также для решения некоторых навигационных задач. В самолетовождении в зависимости от уровн...

»
Для тех, кто не имеет возможности построить модель из пенопласта, предлагаем из­готовить электролет наборной конструкции (рис. 46). Основной материал для крыла — бамбук. Из него де­лают кромки, нервюры и законцовки: для кромок — сечением 2x1,5 мм, для дру­гих частей—1x1 мм. Лон­жерон выстрагивают из сос­новой рейки сечением 1,5Х1,5 мм. Все соединения выполняют с помощью ниток...

»
По своему назначению карты, применяемые в гражданской - авиации, делятся: на полетные, применяемые для самолетовождения по трас­сам и маршрутам в районе полетов; на бортовые, применяемые в полете для определения места самолета при помощи использования радиотехнических и астроно­мических средств; на специальные (карты магнитных склонений, часовых поясов, бортовые карты неба, карты для определения м...

»
При использовании УКВ радиопеленгаторов для контроля пути по направлению запрашиваются в телефонном режиме обратные пеленги (ОП) словами: «Дайте обратный пеленг».При использовании KB радиопеленгаторов для контроля пути по направлению запрашиваются пеленги в телеграфном режиме кодовым выражением ЩДМ, которое означает: «Сообщите магнит­ный курс, с которым я должен направиться к вам при отсутст­вии в...

»
Формулы теории Глауэрта - Локка выведены для ротора, имеющего любое число лопастей. Каждая лопасть прикреплена к втулке горизонтальным шарниром, позволяющим ей производить взмахи в плоскости, проходящей через продольную ось лопасти и ось ротора. Вертикальный шарнир крепления лопасти, позволяющий ей колебаться в плоскости вращения, не принимается во внимание при рассмотрении движения лопасти. Хорда...

»
Изготовление тепловых воз­душных шаров (монгольфье­ров)— увлекательное занятие в пионерском лагере. А запуски бумажных аэростатов украсят любой праздник или игру «Зар­ница». Работа над воздушным шаром посильна ребятам 9—10 лет, материал для его построй­ки — папиросная бумага. Еще понадобятся клей,нитки, каран­даш, линейка и ножницы. Постройка шара-монгольфье­ра. Работу начинают с...

»
Цель дан­ной игры — достижение наи­большей дальности полета. Перед началом надо огово­рить, сколько раз каждый участник будет запускать свою модель, иными словами, сколь­ко будет зачетных полетов (обычно — три). А перед ни­ми надо дать возможность совершить один-два трениро­вочных (пристрелочных) за­пуска. Очередность выхода на старт обычно определяют же­ребьевкой.

»
Эти режимы предназначены для обзора земной поверхности, пе­риодического определения места самолета, определения начала снижения с эшелона и для выполнения маневра захода на по­садку.

»
Для определения девиации компаса необходимо знать, каков магнитный курс самолета, и сравнить его значение с компасным курсом, так как Δк = МК - КК. Самолет устанавливается на заданный МК: 1) пеленгованием продольной оси самолета; 2) по магнитному пеленгу ориентира.

»
Выше было сказано, что несущий винт-ротор при движении автожира свободно вращается - авторотирует. Состояние устойчивой авторотации несущего винта является абсолютно необходимым условием при всех возможных летных режимах автожира, потому что необходимая подъемная сила развивается только на авторотирующем винте. Кроме того, лопасти ротора, при наличии шарнирного крепления к втулке, могли при отсутс...

»
Радиотехническая система ближней навигации РСБН-2 пред­назначена для обеспечения самолетовождения, захода на посадку в сложных метеоусловиях, контроля и управления движением са­молетов с земли. Появление этой системы явилось большим дости­жением на пути автоматизации полета, обеспечения высокой точ­ности самолетовождения и безопасности полетов.

»
Кодовые выражения ЩГЕ и ЩТФ используются при запросе места самолета у радиопеленгаторного узла или радиопеленгатора, работающего совместно с наземным радиолокатором. ЩГЕ (в телеграфном режиме) .означает: «Сообщите истинный пеленг самолета (ИПС) и расстояние (S) от радиопеленгатора до самолета». Для получения МС штурман прокладывает на борто­вой карте от радиопеленгатора ИПС, а на линии пеленга &md ...

»
Модель ракеты «Родник» (рис. 60) разработана в пио­нерском лагере с таким же на­званием для сброса вымпелов и листовок на праздниках. Корпус склеивают на оправке диаметром 70 мм из трех слоев бумаги. В донной части закрепляют обойму из пенопласта под двигатель МРД 20-10-4. Если же пред­полагается применение других МРД, то лучше вклеить ста­кан для сменных моторных отсеков, в которые устанавли­вают...

»
Опыт использования РСБН-2 показывает, что достаточно пол­ная реализация возможностей этой системы прежде всего зави­сит от заблаговременной подготовки данных для ее применения и оперативностиработы экипажа в полете, поэтому экипажи са­молетов, на которых установлена аппаратура РСБН-2, обязаны в период предварительной подготовки к полету подготовить по всем участкам трассы необходим...

»
Визуальная ориентировка ведется по земным ориентирам. Ори­ентирами называются все объекты на земной поверхности или отдельные ее характерные участки, выделяющиеся на общем лан­дшафте местности, изображенные на карте и видимые с самолета. Они могут использоваться для определения места самолета. Ориентиры подразделяются на линейные, площадные и то­чечные.

»
Навигационная линейка НЛ-10М является счетным инструмен­том пилота и штурмана и предназначена для выполнения необхо­димых расчетов при подготовке к полету и в полете. Она устроена по принципу обычной счетной логарифмической линейки и позволяет заменить сложные математические действия над числами (умножение и деление) более простыми действиями — сложением и вычитанием отрезков шкал, выражающи...

»
Воздушный змей сегодня не­редко воспринимается только как игрушка для детского раз­влечения. Но мало кто знает, что он имеет давнюю и интерес­ную историю. Первые воздушные змеи по­явились около четырех тысяч лет назад. Родина их — Китай. Самой распространенной была форма змея-дракона, что, воз­можно, и определило название «воздушный змей». Современ­ные воздушные змеи совершен­но не напоминаю...

»
Дневные срочные вылеты с аэродромов, не оборудованных для ночных полетов, разрешается начинать за 30 мин до восхода Солн­ца и заканчивать полет за 30 мин до наступления темноты в рав­нинной и холмистой местности и не позднее захода Солнца в гор­ной местности. В районах севернее широты 60° полеты разрешается заканчивать за 30 мин до наступления темноты.

»
Ромбический коробчатый змей (рис. 6) выполнен по схеме Потера. От предыдущего он отличается большими размера­ми (длина 1,6 м, ширина 2 м) и более сложной конструкцией, Для увеличения подъемной си­лы змей-великан (назовем его так) снабжен открылками, что придает сходство с первыми са­молетами. Каркас змея делают из сос­новых реек сечением 15Х 15 мм. Подойдут также бамбуковые палки, дюралюминиевые т...

»
Воздушные массы постоянно движутся относительно земной поверхности в горизонтальном и вертикальном направлениях. Го­ризонтальное движение воздушных масс называется ветром. Ве­тер характеризуется скоростью и направлением. Они изменяют­ся с течением времени, с переменой места и с изменением высоты. С увеличением высоты в большинстве случаев скорость вет­ра увеличивается, а направление изменяется. На...

»
Итогом работы авиакружка за одну смену обычно является выс­тавка технического творчества или праздник малой авиации. Если в пионерском лагере несколько технических круж­ков, то устраивают общела­герную выставку. Праздник малой авиа­ции — своеобразный отчет авиамоделистов пионерского лагеря. В программу его про­ведения включают запуски зре­лищно интересных моделей. Вот как проходит такой праз...

»
Полет на радиостанцию заканчивается определением момента ее пролета. Как правило, этот момент необходимо ожидать. О приближении самолета к радиостанции можно су­дить по следующим призна­кам: а) истекает расчетное время прибытия на РНТ; б) увеличивается чувст­вительность радиокомпаса, что сопровождается откло­нением стрелки индикатора настройки вправо.

»
Из пяти категорий авиа­ционных моделей наиболее рас­пространенной можно при­знать категорию кордовых мо­делей. Кордовая модель — мо­дель летательного аппарата, летающая по кругу и управ­ляемая при помощи нерастягиваемых нитей или тросов (корд). Пилот, находящийся на земле, воздействуя на ор­ганы управления модели (ру­ли высоты) посредством корд, может заставить ее лететь горизонтально или вы...

»
В пионерском лагере из-за непродолжительной ра­боты кружка важное значение приобретает организация и со­держание каждого занятия. Вопросы методики проведе­ния занятий, их организацион­ная четкость во многом опре­деляются опытом руководи­теля. Большую часть руководи­телей кружков в пионерских лагерях составляют энтузи­асты технического творчества, слабым местом которых явля­ется недостаточное знани...

»
Резиномоторная модель са­молета класса В-1 (рис. 31) может рассматриваться как шаг к спортивному совер­шенствованию в категории сво-боднолетающих моделей.

»
Для выполнения аэродинамического расчета автожира необходимо вычислить поляру всего автожира. Почти все существующие автожиры помимо основной несущей поверхности - ротора - имеют еще небольшое неподвижное крыло, расположенное под ротором. Поэтому прежде всего в нашу задачу должно войти определение поляры комбинированной несущей поверхности, состоящей из ротора и крыла; очевидно, что, имея такую по...

»
В практике авиамоделизма наибольшее распространение получили вертолеты одновин­товой схемы. Простейшая мо­дель вертолетов лишь по прин­ципу полета напоминает про­тотип, будет вернее ее назвать «летающим винтом». А среди авиамоделистов за таким вин­том укрепилось название «муха». Простейший вертолет — «муха» (рис. 51) состоит из двух деталей — воздушного винта и стержня.

»
Средний крутящий момент ротора равен:

»
Конструктивно различают мягкие, полужесткие и жесткие дирижабли. У мягких дирижаб­лей кабина и двигатель крепят­ся на стропах к оболочке из газонепроницаемой ткани. У по­лужестких — оболочка из ткани, а гондола и моторы закреплены на килевой металлической ферме. Жесткие дирижабл имеют, каркас из шпангоутов и стрингеров, обтянутых легко и прочной тканью. Силовая ус­тановка жесткого...

»
Плавность в работе ротора на всех полетных режимах автожира является необходимым требованием, так как неровности и тряска, передаваясь на остальные части машины, будут влиять на прочность конструкции, регулировку ротора и других деталей. За неимением достаточного эксплуатационного опыта придется пока ограничиться предварительными соображениями об условиях плавной работы ротора. Во-первых, ротор до...

В месте измерения и направлением линии пути, отсчитывается по часовой стрелке от направления на географический север. По сути показывает направление путевой скорости относительно севера.

Непосредственно измеряется с помощью . (Во избежание путаницы нужно проверять настройки для каждой конкретной модели приёмника).

Широко применяется в ориентировании на местности при использовании спутникового навигационного приёмника .

Указывается в угловых градусах в диапазоне 0…360°, иногда -180…180°. 0° всегда применяется для указания направления движения на север, 90° - на восток.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Путевой угол" в других словарях:

    Магнитный путевой угол, МПУ угол заключённый между направлением линии пути и магнитным меридианом места измерения с учётом магнитного склонения, отсчитывается по часовой стрелке. Приёмники GPS, как правило, показывают путевой угол. (Во избежание… … Википедия

    Угол между магнитным меридианом и линией боевого пути самолета. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

    Путевая машина, применяемая на железных дорогах для ремонта земляного полотна, а также для очистки железнодорожных путей от снега. Путевые струги производят нарезку … Википедия

    В авиации, угол между продольной осью и вектором путевой (относительно Земли) скорости летательного аппарата. Возникает при боковом ветре. Обычно С. у. совпадает с углом между векторами воздушной (относительно воздушной среды) и путевой… … Большая советская энциклопедия

    От полюса до полюса Локсодрома или локсодромия кривая на поверхности вращения, пересекающая все меридианы под постоянным углом, называемым локсодромическим путевым углом. Введена в рассмотрение португальским математиком Нониусом в 1530… … Википедия

    целостность - 2.15 целостность (integrity): Свойство сохранения правильности и полноты активов. Источник … Словарь-справочник терминов нормативно-технической документации

    целостность ГНСС - 18 целостность ГНСС: Способность глобальной навигационной спутниковой системы за заданный интервал времени и с заданной вероятностью обеспечивать потребителей ГНСС сигналами тревоги о недостоверности навигационных сигналов ГНСС.

Магнитным курсом (МК) называется угол, заключенный между северным направлением магнитного меридиана, проходящего через самолет, и продольной осью самолета.

Истинным курсом (ИК) называется угол, заключенный между северным направлением истинного меридиана, проходящего через самолет, и продольной осью самолета.

Компасным курсом (КК) называется угол, заключенный между северным направлением компасного меридиана, проходящего через самолет, и продольной осью самолета.

Линия заданного пути (ЛЗП) - прямая между соседними точками маршрута.

Заданным путевым углом (ЗПУ) называется угол, заключенный между северным направлением меридиана, и линией заданного пути.

Угол сноса (УС) - угол, заключенный между продольной осью самолета, и линией пути.

Азимутом (А) ориентира называется угол, заключенный между северным направлением меридиана, проходящего через данную точку, и направлением на наблюдаемый ориентир.

Магнитным пеленгом радиостанции (МПР) называется угол, заключенный между северным направлением магнитного меридиана, и направлением на радиостанцию.

Курсовой угол радиостанции (КУР) называется угол, заключенный между продольной осью самолета и направлением на радиостанцию. КУР отсчитывается от продольной оси самолета до направления на радиостанцию по ходу часовой стрелки от 0 до 360°.

КУРС - 288 гр.

КУР - 40 гр.

МПР - 328 гр.

АЗИМУТ - 148 гр.

Магнитный курс взлета и посадки аэродрома Чугуев равен 345(165) градусам. Чтобы узнать истинный курс нужно узнать сумму МК и магнитного склонения для данной местности(+8градусов). Т.е.ИК=345+8=353градуса.

Маршрут представляет собой путь из исходного пункта маршрута (ИПМ) в конечный пункт маршрута (КПМ) . Маршрут как правило включает несколько поворотных пунктов (ППМ) . Прямая между соседними точками маршрута называется линией заданного пути(ЛЗП).

Итак самолет находится в ИПМ и нам нужно знать куда следовать дальше. Направление движения определяется заданным путевым углом. Однако, при наличии боковой составляющей ветра, самолет будет сносить с линии заданного пути, и для сохранения ЛЗП нужно вносить поправку на ветер. Эта поправка называется угол сноса.

Итак как провести самолет от одного до другого пункта маршрута разобрались.

Выдерживаем заданную скорость, высоту и ЗПУ и будет нам счастье аж до следующего ППМ. Но вот как определить что мы подходим к этому самому следующему ППМ?

Существует несколько способов определить местоположение самолета:

1. Визуально, по наземным ориентирам. Но, если ориентир будет скрыт облачностью, либо самолет отклониться от ЛЗП на расстояние, с которого ориентиры будут неразличимы, мы рискуем потеряться. Поэтому визуальные ориентиры служат больше для подтверждения правильности выдерживания нашего маршрута, чем как основной способ навигации.

2. По географическим координатам (широта-долгота) можно точно указать местонахождение самолета, но для определения местоположения самолета по географическим координатам требуется специальное оборудование, которое имеется далеко не на всех самолетах.

3. По азимуту и дальности до маяка (радиостанции) можно с достаточной точностью определить свое местонахождение на маршруте. Для этого достаточно чтобы самолет был оснащен дальномерным оборудованием и радиокомпасом. Настроив радионавигационное оборудование на РСБН, мы сможем контролировать правильность выдерживание маршрута на протяжении всего полета по заранее известным значениям азимута и дальности в контрольных точках.

Например: в контрольной точке №Х расчетная Д=55 А=70. Фактически имеем Д=58 А=70. Значит мы идем на 3 км восточнее ЛЗП, и нужно взять соответствующую поправку. Либо, в той же ситуации, имеем Д=55 А=90. Следовательно мы отклонились южнее маршрута и нужно исправлять ситуацию.

Цель этого упражнения состоит в том, чтобы летчик научился определять и выдерживать свое местоположение по дальности и азимуту, четко представлял в какую сторону и насколько он отклонился от маршрута (границ пилотажной зоны).

Выдерживание местоположения в пилотажной зоне с использованием РТС.

Использование наземных визуальных ориентиров для определения своего местоположения удобно до определенного предела. Например, ориентируясь по Печенежскому водохранилищу, вы можете достаточно точно определить направление на аэродром, но определить границы пилотажной зоны с достаточной точностью визуально вам вряд-ли удастся. Удерживать свое местоположение в пределах пилотажной зоны используя дальность и азимут до РСБН достаточно просто.
На полетной карте у вас указаны дальности и азимуты границ пилотажной зоны. Выполняя задание летчик должен представлять свое местоположение относительно границ зоны, и соответствующим образом строить следующий маневр.

Выбор системы отсчета путевых углов полета и курса самолета обусловливается эксплуатационными данными самолета и его навигационным оборудованием.

Условия использования курсовых приборов на самолете можно разделить на три группы:

1. Полеты с небольшими пределами изменения магнитных широт на самолетах, оборудованных магнитными или гиромагнитными компасами.

2. Полеты со значительными изменениями магнитных широт на самолетах, оборудованных магнитными компасами, гирополукомпа- сами или курсовыми системами средней точности, без автоматического измерения угла сноса, путевой скорости и счисления пути.

3. Полеты на любые расстояния на самолетах, оборудованных точными курсовыми системами и приборами для автоматического измерения угла сноса, путевой скорости и счисления пути.

Для первой группы условий выбирают магнитную локсодромическую систему отсчета путевых углов полета и курса самолета. При этом длину каждого локсодромического отрезка пути берут такой, чтобы магнитный путевой угол в его начальной точке отличался от путевого угла конечной точки не более чем на 2° при длине отрезка до 300 км, т. е.

В этом случае средний магнитный путевой угол отрезка отличается от крайних не более чем на 1°, а максимальное отклонение локсодромической линии пути от ортодромической не превышает величины т. е. локсодромическая линия совпадает с ортодромической.

Если начальный и конечный путевые углы отрезка отличаются менее чем на 2°, то длина локсодромического отрезка пути может быть увеличена при полетах в меридиальном направлении или в любом направлении в экваториальных широтах при малых изменениях Дм.

Магнитный локсодромический путевой угол в практике самолетовождения обычно называют магнитным путевым углом (МПУ).

МПУ измеряют относительно магнитного меридиана средней точки отрезка пути:

Для второй группы условий выбирают ортодромическую систему отсчета путевых углов полета и курсов самолета относительно опорных меридианов или начальных меридианов отрезков пути. В этом случае ортодромический путевой угол полета (ОПУ) считается равным истинному путевому углу отрезка пути в его начальной точке или в точке пересечения продолжения отрезка с опорным меридианом.

При пролете опорных меридианов или начальных точек отрезков пути гирополукомпас или курсовая система выставляется по показаниям истинного курса самолета. Например, курсовая система переводится в режим МК с установкой (на шкале склонений) магнитного склонения в точке МС или в режим астрономической коррекции. После согласования (отработки истинного курса) система переводится в режим ГПК.

Если необходимо проверить точность показаний ортодромического

Если эти условия не выполняются, то в показания ОК. вводится поправка, выравнивающая левую часть уравнения с правой.

Учет девиации магнитного компаса для третьей группы условий ведется по правилам, принятым для второй группы.

Учитывая высокую точность курсовых приборов как для третьей, так и для второй групп в зависимости от конкретных условий полета возможно применение ортодромического отсчета путевых углов от магнитных опорных меридианов.

В первую очередь необходимо определиться, что такое ветер. Ветер – это перемещение воздушных масс из одной точки в другую. Как известно, любое воздушное судно перемещается внутри воздушной массы. А что если воздушная масса, в которой проходит полет, также перемещается относительно земли? Помимо движения с собственной скоростью относительно воздушной массы, самолет будет перемещаться еще и со скоростью движения этой воздушной массы. Учитывая то, что скорость ветра на высотах может достигать значений более 200-300 км/ч, становится очевидно, что учет ветра в полете крайне важен. Несложно посчитать, что если при таком ветре (предположим строго боковом) выполнять полет по трассе в течение одного часа и при этом не учитывать ветер, то в итоге через час самолет окажется в 200-300 км в стороне от трассы. В случае же, если это ветер встречный, и экипаж не учтет его на этапе подготовки к полету, может элементарно не хватить топлива до аэродрома назначения.

Истинная и путевая скорость.

При учете влияния ветра на полет различают два вида скоростей: истинная воздушная скорость (обозначается Vи или по-английски TAS – true airspeed ) и (обозначается W или по-английски GS – ground speed ).

Истинная воздушная скорость – это скорость движения воздушного судна относительно воздушной массы, в которой проходит полет.

Путевая скорость – скорость воздушного судна относительно земли.

Следует запомнить, что ветер не оказывает влияния на истинную воздушную скорость. Влияние ветра сказывается только на путевой скорости.

Курс и путевой угол.

По аналогии со скоростью, при учете ветра различают два направления полета воздушного судна: курс (HDG – heading) и путевой угол (обозначается ПУ , по-английски TRK — track ).

Курс – это угол, заключенный между северным направлением меридиана, принятого за начало отсчета и продольной осью воздушного судна.

Путевой угол – это угол, заключенный между северным направлением меридиана, принятого за начало отсчета, и линией пути. Различают фактический путевой угол (ФПУ) и заданный путевой угол (ЗПУ) .

Что касается отсчета направлений, в навигации применяются несколько меридианов начала отсчета: истинный, магнитный, опорный. При решении задач, связанных с учетом ветра, при условии, что все величины приведены к одному и тому же меридиану, неважно, какие направления применяются, истинные или магнитные.

Направление ветра.

В аэронавигации различают два вида ветра: навигационный (НВ) и метеорологический , их направления различаются на 180 градусов и на магнитное склонение. Дело в том, что в основном в авиации принято все расчеты выполнять от магнитного меридиана, в то время как в метеорологии гораздо удобнее пользоваться истинным направлением меридиана начала отсчета.

Навигационный ветер – угол между северным направлением меридиана, принятого за начало отсчета и направлением, куда дует ветер.

Метеорологический ветер – угол между северным направлением меридиана, принятого за начало отсчета и направлением, откуда дует ветер.

Навигационный ветер применяется исключительно как вспомогательная величина при расчетах. Метеорологическое направление ветра – та величина, к которой привык каждый из нас. Юго-западный ветер, означает, что ветер дует с Юго-запада, или если пересчитать в градусы, то получим направление 225 градусов, именно в таком виде и применяется значение направления ветра в авиации.

Навигационный треугольник скоростей.

Как известно, скорость величина векторная. Вектора воздушной скорости, ветра, и путевой скорости образуют так называемый навигационный треугольник скоростей (НТС) – основу основ аэронавигации. Применяя общие правила геометрии и тригонометрии можно вычислить все величины и углы, зная направление и величину двух векторов.

Как видно из рисунка, полет самолета проходит по определенной траектории – линии заданного пути , которая соответствует вектору путевой скорости, однако продольная ось самолета отвернута на ветер для компенсации сноса, как мы помним, продольная ось соответствует вектору воздушной скорости.

Таким образом, мы получили угол, на который нужно отвернуть на ветер, чтобы полет проходил по трассе, это и есть угол сноса – УС (по-английски WCA – wind correction angle или drift angle).

Другими словами, это угол, заключенный между векторам воздушной и путевой скоростей. Отсчитывается угол сноса всегда от вектора воздушной скорости по часовой стрелке (как в нашем случае) со знаком плюс, против часовой – со знаком минус.

Чтобы вычислить скорректированный на ветер курс полета, необходимо из путевого угла вычесть угол сноса со своим знаком.

Расчет угла сноса и путевой скорости.

Для вычисления угла сноса и путевой скорости, необходимо вычислить вспомогательную величину, которая называется угол ветра (УВ) – угол, заключенный между вектором путевой скорости и вектором ветра, то есть, это направление ветра с привязкой к направлению движения воздушного судна.

Напомним, что навигационный ветер (НВ) отличается от метеорологического на 180 градусов и, как правило, на величину магнитного склонения.

С помощью теоремы синусов получаем и формулу угла сноса:

Эту формулу легко упростить, выразив угловые величины в радианах:

U – скорость ветра, – истинная воздушная скорость. Для корректного расчета обе этих величины должны быть приведены к одной единице измерения, например к узлам или метрам в секунду. На практике вместо постоянного значения 57,3 применяют 60 , что дает минимальную ошибку, но значительно упрощает вычисление угла сноса в уме.

Формула путевой скорости выводится методом проецирования векторов воздушной скорости и ветра на соответствующую ось и выглядит следующим образом:

При небольших значениях угла сноса можно использовать упрощенную формулу:

Если в России традиционно угол сноса принято вычислять со знаком плюс или минус, то на западе пилотов учат несколько по-другому: сам угол вычисляется как модульная величина, к которой добавляется буквы R или L, R означает, что ось самолета нужно развернуть против ветра вправо, то есть прибавить угол сноса к путевому углу, а L – наоборот влево, то есть угол сноса вычитается из путевого угла. Кроме того, вычисление угла сноса и путевой скорости в основном производится не по формулам, а с помощью механического компьютера E6B и его аналогов.

Считаем в уме.

Существует простой алгоритм вычисления угла сноса в уме.В первую очередь необходимо вычислить максимальный угол сноса при данном ветре. Как легко догадаться, максимальным он будет при боковом ветре, то есть при угле ветра в 90 градусов, а поскольку синус 90 градусов равен единице, эту часть формулы упраздняем и получаем:

Прикинув максимальное значение угла сноса, его нужно скорректировать на направление, что легко делается в уме, если знать значения синусов основных углов:

Знак же определяется исходя из направления ветра, если ветер дует в правый борт, то минус, если в левый, то плюс.

Зная косинусы основных углов легко также в уме вычислить продольную составляющую ветра, которая в свою очередь позволит вычислить путевую скорость.

Для примера рассчитаем в уме угол сноса и путевую скорость для самолета Боинг-737 при заходе на посадку, имея следующие данные:

  • Воздушная скорость при заходе 140 узлов
  • Посадочный путевой угол 90˚
  • Ветер 120˚, 30 узлов
  • Определяем максимальный угол сноса: 12˚, корректируем на направление ветра. Ветер встречно-боковой в правый борт под 30˚, таким образом, угол сноса равен минус 6˚, то есть необходимо довернуть вправо против ветра на 6˚. Далее рассчитываем встречную составляющую ветра: 26 узлов. Вычитаем ее из воздушной скорости, получаем путевую скорость на глиссаде 114 узлов.